• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, May 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

On-demand preparation of organosilicon reagents

Bioengineer by Bioengineer
April 21, 2023
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

National University of Singapore (NUS) scientists have demonstrated that stepwise customised functionalisation of multihydrosilanes to access fully substituted silicon compounds can be realised using neutral eosin Y, an inexpensive dye molecule.

Illustration of the Stepwise Decoration of the Silicon Atom

Credit: Wu Jie, NUS Faculty of Science

National University of Singapore (NUS) scientists have demonstrated that stepwise customised functionalisation of multihydrosilanes to access fully substituted silicon compounds can be realised using neutral eosin Y, an inexpensive dye molecule.

The development of a unified catalytic platform for stepwise and programmable functionalisation of multihydrosilanes is highly challenging. However, having this platform will facilitate the rational design of organosilanes with predictable functions, in which bespoke silane molecules are required. Three specific requirements need to be simultaneously realised through a single catalytic system: (i) the selective and preferable hydrogen atom abstraction of silicon-hydrogen (Si-H) bonds in the presence of various activated carbon-hydrogen (C-H) bonds; (ii) a diverse range of Si-H functionalisations; and (iii) highly selective monofunctionalisation of di- and trihydrosilanes.

In a recent paper, Associate Professor Jie WU and his colleagues from the Department of Chemistry, NUS, have developed a new method for synthesising organosilanes, a family of chemical compounds which have a variety of applications from organic and polymer synthesis, materials science, medicinal chemistry, to agriculture. The researchers used eosin Y, a low-cost, readily available dye molecule, as a photocatalyst to selectively remove hydrogen atoms from hydrosilanes. This enables different functional chemical groups to be attached to the silicon atom in a step by step manner, potentially creating a wide variety of useful silicon compounds. An amount of energy of approximately 90 kcal/mol is required to break a Si-H bond, and the uniqueness of this catalyst is that it uses much lower energy (~63 kcal/mol) to break the Si-H bond. Also, unlike other photocatalysts, eosin Y is able to selectively break the Si-H bonds rather than some more reactive C-H bonds. More than eight different new chemical transformations have been realised by the research team using various commodity feedstocks as the starting materials to react with hydrosilanes.

These findings were published in the journal Nature Chemistry on 9 March 2023.

The researchers also used a continuous microflow reactor for the monofunctionalisation of di- and trihydrosilanes, which resulted in high selectivity and yield. Unlike conventional bath reactors, the continuous microflow reactor allows for high mixing efficiency and precise residence time control. Also, this process is highly scalable. The use of eosin Y with microflow reactor offers a convenient strategy for stepwise decoration of silicon atoms to access silanes with four different substituents in a programmable and on-demand manner.

The research team plans to extend the strategy to generate chiral silicon reagents, and to apply this method to materials/polymers containing Si-H bonds for post-functionalisation purposes. They are also working towards fully automating the on-demand synthesis of multifunctional silanes.

Assoc Prof Wu said, “We would like to establish a general and sustainable strategy to synthesize functional organosilanes in an efficient, on-demand, and fully automated fashion. With this method, the preparation of desired silicon reagents will be more easily accessible, and in future, chemists can focus their energies on the design and development of functional silicon molecules limited only by their imagination.”



Journal

Nature Chemistry

DOI

10.1038/s41557-023-01155-8

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Stepwise on-demand functionalization of multihydrosilanes enabled by a hydrogen-atom-transfer photocatalyst based on eosin Y

Article Publication Date

9-Mar-2023

COI Statement

J.W., F.X. and M.Z. are inventors on an International Patent Application (PCT/SG2022/050462) submitted by the National University of Singapore that covers the synthesis of functional silanes from multihydrosilanes by neutral eosin Y HAT photocatalysis. The other authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

View of the Falcon 9 rocket launch from a park in Ventura County

“Here Comes the Boom: Investigating the Impact of Rocket Launch Sonic Booms on Nearby Communities #ASA188”

May 19, 2025
Gamma-Ray Energy Tracking Array

New Data Streaming Software Pursues Light-Speed Transfer from Accelerator to Supercomputer

May 19, 2025

Wiley Expands KnowItAll Libraries with New Raman Data on Microplastics, Biopolymers, Polymers, Monomers, and Minerals

May 19, 2025

Unveiling Hidden Laws: Rice University Researchers Use Magnetic Particles to Detect Invisible Edge Currents

May 19, 2025

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    666 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    90 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KNN Predicts Hemorrhagic Shock Severity Non-Invasively

New Study Uncovers Protective Role of 5’LysTTT tRNA Fragments in Neurons Exposed to Botulinum Toxin

Emerging Research Suggests Microplastics in Ultra-Processed Foods May Impact Brain Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.