• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Old species learn new tricks…very slowly

Bioengineer by Bioengineer
August 15, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Sean Mattson, STRI

A quick look at the fossil record shows that no species lasts forever. On average, most species exist for around a million years, although some species persist for much longer. A new study published in Scientific Reports from paleontologists at the Smithsonian Tropical Research Institute in Panama shows that young species can take advantage of new opportunities more easily than older species: a hint that perhaps older species are bound to an established way of life.

"We're lucky to live and work in Panama where nature has set up its own evolutionary experiment," said Aaron O'Dea, STRI paleontologist. "When the Caribbean Sea was isolated from the Pacific Ocean by the slow uplift of the Isthmus of Panama, nutrient levels fell and Caribbean coral reefs proliferated. We can use the excellent fossil record to observe how Caribbean life responded to this dramatic environmental and ecological transformation."

The team's best choice for tracking the change was a peculiar family of marine animals known as the cupuladriid bryozoans. These relatively small animals consist of unusual, free-living, disc-shaped colonies of individuals called zooids. "Colonies form through sexual reproduction or asexually by cloning, as bits of the colony break off and continue to grow," said STRI post-doc and coauthor Blanca Figuerola. "They abound on the sea floor along the continental shelf across the tropics, filtering plankton from the water via a beautiful waving crown of tentacles. When colonies die, their hard skeletons remain, and are exceptionally abundant as fossils."

O'Dea's group collected and identified more than 90,000 cupuladriid colonies from 200 fossil samples and 90 more recent samples collected by dredging the sea floor. The samples contained mud, sand, coral remains and other indicators of the kind of habitats where the bryozoans had lived. The team measured the abundances of the 10 most common species along gradients of these environmental and ecological indicators.

"We were intrigued to find that, even though all species could expand into the new Caribbean habitats created after final formation of the Isthmus, different species did so at different speeds," said O'Dea. "The patterns were clear–old species that originated before 8 million years ago took 2 million years longer to expand into the new habitats than the younger species."

"Perhaps younger species, which have smaller populations, are less tied to their history," said former STRI post-doc and University of Saskatchewan researcher

Santosh Jagadeeshan, another co-author. "Old species, with large, settled populations may be less able to escape from established roles and defined environmental tolerances because they mate with each other creating a high gene flow that makes it hard for genes for new traits to become established. It seems you can't teach an old dog new tricks in evolution, either."

###

The study was funded by Panama's National Bureau of Science, Technology and Innovation, SENACYT, Panama's National System of Researchers (SNI), the U.S. National Science Foundation (NSF), the Smithsonian Institution, STRI, the National Geographic Society and Mr. Josh Bilyk.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical biodiversity and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website. Promo video.

Reference: O'Dea, A., De Gracia, B., Figuerola, B. and Jagadeeshan, S. 2018. Young species of cupuladriid bryozoans occupied new Caribbean habitats faster than old species. Scientific Reports, DOI: 10.1038/s41598-018-30670-9

Media Contact

Beth King
[email protected]
202-633-4700 x28216
@stri_panama

http://www.stri.org

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-30670-9

Share13Tweet8Share2ShareShareShare2

Related Posts

Street View Greenspace Boosts Midlife Women’s Heart Health

Street View Greenspace Boosts Midlife Women’s Heart Health

October 12, 2025
Five-Toed Jerboa: Unveiling High-Altitude Adaptation

Five-Toed Jerboa: Unveiling High-Altitude Adaptation

October 12, 2025

Comparing Sex-Specific Brain Structures in Humans and Mice

October 12, 2025

Both Xenopus laevis Sub-Genomes Undergo Similar Evolution

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1220 shares
    Share 487 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing 2D Transistors: A New Poly Pitch

Ferroelectric Memristor Memory Revolutionizes AI Training and Inference

West African Migrants’ Health Views in Norway: Insights

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.