• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Old methods prove true for studying proteins

Bioengineer by Bioengineer
October 19, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 ?ukasz Jaremko and Vladlena Kharchenko

A fresh new look at an old technique in protein biochemistry has shown that it should be reintroduced to the spectroscopy toolkit.

For decades, scientists have used nuclear magnetic resonance (NMR) spectroscopy to probe the molecular motions of proteins on various timescales. This technique has revealed aspects of enzyme reactions, protein folding and other biological processes, all on an atomic scale.

Typically, spectroscopists will gauge the rotation of NMR-active atoms in the protein backbone with and without proton irradiation to calculate a ratio known as a steady-state nuclear Overhauser effect (NOE); however, it was not always done this way.

Before steady-state NOE experiments became the norm in biological investigations, scientists would often take a greater number of measurements over the course of an irradiation experiment. This method, termed “dynamic” NOE, might seem more complicated, but according to Ph.D. student Vladlena Kharchenko, it is no more time consuming than steady-state NOE, while dynamic NOE provides additional information about protein flexibility and is far more accurate to minute biological motions in proteins.

“It works for proteins and makes studying their dynamics even more accurate,” says Kharchenko, a member of ?ukasz Jaremko’s lab at KAUST. “Our message to biological NMR spectroscopists is simple: ‘Don’t be afraid of dynamic NOE.'”

To prove the technique’s worth, Kharchenko, Jaremko and their team performed a series of NMR experiments on ubiquitin, a globular protein that regulates a range of processes inside the cell. Working with Mariusz Jaremko, also from KAUST, and collaborators in Poland, the researchers collected both steady-state and dynamic NOE measurements and demonstrated that the dynamic approach is always preferable–except under a few specific conditions, such as when instrument access is limited or when proteins degrade very rapidly.

Notably, the steady-state approach proved especially prone to errors in regions of the ubiquitin protein that were flexible and disposed to moving around. The dynamic technique, in comparison, offered no such misleading results.

In light of their findings, the KAUST team hopes that other scientists with an interest in atomic-level protein mechanics will now begin to adopt, or at least reconsider, dynamic NMR methods. Kharchenko says that sometimes, “it’s worth dusting off forgotten methods and checking if they fit to new emerging questions and systems of research interest.”

###

Media Contact
KAUST Discovery team
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1037/old-methods-prove-true-for-studying-proteins

Related Journal Article

http://dx.doi.org/10.1007/s10858-020-00346-6

Tags: Atomic/Molecular/Particle PhysicsBiochemistryBiologyCell BiologyElectromagneticsMolecular BiologyMolecular PhysicsNuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Lactylation Insights Reveal Fat Deposit Regulation in Pigs

Lactylation Insights Reveal Fat Deposit Regulation in Pigs

December 18, 2025
blank

Lanthipeptides Linked to Genetic Exchange in Prokaryotes

December 18, 2025

Comparing LEGU-1 and LGMN Interactions with Proton Pump Inhibitors

December 18, 2025

Two-Decade Shift in Parasite Communities of Paralonchurus Brasiliensis

December 18, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Combatting Workplace Loneliness in Healthcare: Social Skills Matter

Elevated BRAF Variant Frequency Linked to Poor Melanoma Outcomes

Comparative Study: Smoking Cessation in Chronic Pain Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.