• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Old and new stars paint very different pictures of the Triangulum Galaxy

Bioengineer by Bioengineer
January 11, 2023
in Chemistry
Reading Time: 4 mins read
0
Triangulum galaxy
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Astronomers have been gazing at the Triangulum galaxy for centuries. But they’ve never seen it quite like this.

Triangulum galaxy

Credit: A. Smercina/M.J. Durbin/J. Dalcanton/B.F. Williams/University of Washington/NASA/ESA

Astronomers have been gazing at the Triangulum galaxy for centuries. But they’ve never seen it quite like this.

On Jan. 11 at the 241st meeting of the American Astronomical Society in Seattle, a team led by scientists at the University of Washington and the Center for Computational Astrophysics will unveil results using the Panchromatic Hubble Andromeda Treasury Triangulum Extended Region — or PHATTER — survey. The endeavor is giving astrophysicists their first in-depth look at the distinct populations of stars that make up the Triangulum galaxy.

Researchers discovered that this satellite galaxy, a close companion of the much larger Andromeda galaxy, has two drastically different structures depending on the age of the stars.

“The youngest stars and the oldest stars in the Triangulum galaxy — which we can separate out using multiple wavelength filters on the Hubble Space Telescope — are organized very differently,” said Adam Smercina, a postdoctoral researcher at the UW. “This is surprising. For a lot of galaxies, like the Milky Way and Andromeda, the stars are distributed roughly consistently, regardless of their age. That is not the case with Triangulum.”

At about 61,000 light years across, Triangulum is the third-largest galaxy in our local group, after Andromeda and our own Milky Way. In lower-resolution images it has a “flocculent” structure – with many small spiral arms radiating out from a well-defined center.

For the PHATTER survey, the Hubble Space Telescope obtained hundreds of high-resolution images of different sections of the Triangulum galaxy in 108 orbits over the course of more than a year. The team tiled these smaller-section images together to create a comprehensive, high-resolution dataset for Triangulum that for the first time showed the galaxy’s individual stars over a large region in its center.

Thanks to Hubble’s array of filters, researchers could also separate those stars by age. The distribution of younger, massive stars — those less than 1 billion years in age — were roughly in line with the “flocculent” pattern, for which the Triangulum is so renowned. But its older, redder stars are distributed in a very different pattern: two spiral arms radiating out from a rectangular bar at the galaxy’s center.

“This was a largely unknown and hidden feature of the Triangulum galaxy that was very difficult to see without this kind of detailed survey,” said Smercina.

Old stars make up the majority of Triangulum’s mass, but are dimmer than their younger counterparts, according to Smercina. That could explain why the “flocculent” pattern prevails in low-resolution images of the galaxy.

The survey team also does not know why young and old stars have such divergent distributions in Triangulum. Satellite galaxies in general are an eclectic bunch, and many questions remain about their formation and evolution. Satellite galaxies come in many different shapes and can be molded by interactions with their parent galaxies. The Milky Way’s largest satellite galaxy, the Large Magellanic Cloud, for example, is similar in size and mass to Triangulum, but has an irregular and globular shape due to its proximity to our own galaxy.

The PHATTER survey’s on-going analysis should shed light on how these types of galaxies form and interact with their larger neighbors. The team plans to follow up on these initial findings by tracing the history of star formation in Triangulum, comparing different sections of the galaxy.

“A major goal of the PHATTER survey was to generate the kind of detailed, high-resolution data on this prominent satellite galaxy that will allow us to examine its structure in depth, trace its history of star formation and compare what we see to theories of galaxy formation and evolution,” said Smercina. “We’re already finding surprises.”

Other team members include Julianne Dalcanton, director of the Center for Computational Astrophysics in New York, a UW professor of astronomy and principal investigator of the PHATTER project; UW research associate professor of astronomy Benjamin Williams; UW doctoral student Meredith Durbin; and Margaret Lazzarini, a postdoctoral researcher at Caltech.

###

For more information, contact Smercina at [email protected].

Corresponding events at the 241st meeting of the American Astronomical Society in Seattle:

  • Wednesday, Jan. 11, 2023 (10:30 a.m. U.S. Pacific Time): Conference presentation
    • Abstract title: “The Structure of M33 in Resolved Stellar Populations from the PHATTER Survey”
    • Authors: Smercina A, Dalcanton J, Williams B, Durbin M, Lazzarini M, Bell E, PHATTER Team
    • Program number: 319.04
    • Session: ”Multiwavelength Observations of Nearby Galaxies” (10 a.m. to 11:30 a.m.)
  • Wednesday, Jan. 11, 2023 (2:15 p.m. U.S. Pacific Time): AAS press conference
    • Topic: ”Discoveries in the Milky Way’s Backyard and in the Universe at Large”

Link to Google Drive folder containing image files with caption/credit information:

https://drive.google.com/drive/folders/1_U0ABZySSxfDGG9336xAiVdK6qrClxmj?usp=sharing



Method of Research

Observational study

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

October 23, 2025
Nano-biochar Enables Rice Roots to Convert Toxic Silver Ions into Safer Nanoparticles

Nano-biochar Enables Rice Roots to Convert Toxic Silver Ions into Safer Nanoparticles

October 23, 2025

Neutrino ‘Flavors’ Could Unlock the Universe’s Greatest Mysteries

October 22, 2025

Underwater Thermal Vents Could Be the Cradle of Life’s Earliest Molecular Precursors

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    158 shares
    Share 63 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Coral Phylogeny Unveils Ancient Resilience, Risks

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

New Study Demonstrates AI’s Potential to Deliver Safe Treatment Guidance for Opioid Use Disorder During Pregnancy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.