• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

NUS researchers elucidate roles TP63 and SOX2 in squamous cell cancer progression

Bioengineer by Bioengineer
October 15, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Squamous cell carcinomas (SCCs) are aggressive malignancies arising from squamous epithelium of various organs, such as esophagus, head and neck, lung and skin. Previous studies demonstrated that two master transcription factors, TP63 and SOX2, effect genomic activation in SCCs. Now, researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore have taken a step further and identified a SCC-specific protein complex activated by TP63 and SOX2 which triggers a gene cascade that promotes SCC growth.

The findings of the study were published in the prestigious scientific journal Nature Communications in September 2018.

Despite major advancements in cancer research, scientists do not completely understand the development and growth of SCCs, and no effective targeted treatment has been developed for the disease. Researchers at CSI Singapore have therefore embarked on the study in collaboration with the Cedars-Sinai Medical Centre at Los Angeles, USA, to deepen the understanding of SCC biology.

To further investigate the roles of TP63 and SOX2 in SCCs, the team carried out epigenomic profiling of 4 different types of SCCs. Their analysis revealed that TP63 and SOX2 cooperatively and lineage-specifically regulate the expression of CCAT1, a long non-coding RNA which is associated with multiple cancers including SCCs, through activation of its super-enhancers and promoter. CCAT1 forms a protein complex with TP63 and SOX2 which then binds to the super-enhancers of EGFR to further activate two signaling pathways that ultimately trigger SCC progression.

This sequence of molecular interactions driven by TP63 and SOX2 that the team uncovered opens up an array of avenues in which SCC progression can be interfered. "By elucidating the roles of TP63 and SOX2, we not only have identified possible cancer targets but also shed light on the related pathways which will act on SCCs. Collectively, the new knowledge will help pave the way for innovative SCC therapies to be developed," said Professor H Phillip Koeffler, Senior Principal Investigator at CSI Singapore and lead researcher for this study.

Moving forward, the research team will look into more advanced mechanisms of the master transcription factors, TP63 and SOX2, on SCCs development. Using mathematical modelling, the research team will look into the interconnected transcriptional circuit formed by these master transcription factors, as well as their interactions with other super-enhancers. This may provide new clues that can contribute to the development of novel and effective therapeutic modality for SCCs.

###

Media Contact

Tan Yun Yun
[email protected]
65-651-62308
@NUSingapore

http://www.nus.edu.sg/

http://news.nus.edu.sg/press-releases/TP63-SOX2-role-SCC

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-06081-9

Share12Tweet8Share2ShareShareShare2

Related Posts

Moffitt Research Reveals Complementary Approaches to Combat Resistance to KRAS G12C Inhibitors in Lung Cancer

October 30, 2025

Mount Sinai Tisch Cancer Center Unveils Real-Time Data Integration Tool to Accelerate and Enhance Research Accuracy

October 30, 2025

University of South Florida Establishes Pioneering Virology Institute Under the Leadership of Renowned Scientist Dr. Robert C. Gallo

October 30, 2025

Successful Conversion Surgery Post-Chemotherapy in Pancreatic Cancer

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PFAS Levels Linked in Water and Southern California Adults

ECM, ROCK, and Polarity Orchestrate Lung Growth

Cluster Analysis Links Body Composition, Child Health Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.