• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Nucleophilic amino acids as a renewable alternative to petrochemically-derived amines in glycerol epoxy resins

Bioengineer by Bioengineer
March 15, 2024
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Epoxide exhibits superior crosslinking properties, thereby enhancing the bonding performance of soy protein adhesives owing to its elevated glass transition temperature and mechanical property. Commercia resins are mainly derived from petroleum and contain the toxic chemical bisphenol A. Although commercial hardeners have been extensively utilized, these systems still have particular environmental concerns that have been become particularly notable in recent years. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.

The Appearance of cured resins of GER-Lys, GER-Glu, GER-Ser, and GER-Leu and the water-soluble epoxy resin and hardeners used in this study. CREDIT: THE AUTHORS

Credit: Changlei Xia, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China, [email protected]

Epoxide exhibits superior crosslinking properties, thereby enhancing the bonding performance of soy protein adhesives owing to its elevated glass transition temperature and mechanical property. Commercia resins are mainly derived from petroleum and contain the toxic chemical bisphenol A. Although commercial hardeners have been extensively utilized, these systems still have particular environmental concerns that have been become particularly notable in recent years. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.

 

 

DOI

https://doi.org/10.1016/j.jobab.2024.01.003

Original Source URL

https://www.sciencedirect.com/science/article/pii/S2369969824000148

Journal

Journal of Bioresources and Bioproducts



Journal

Journal of Bioresources and Bioproducts

DOI

10.1016/j.jobab.2024.01.003

Method of Research

Experimental study

Article Title

Nucleophilic amino acids as a renewable alternative to petrochemically-derived amines in glycerol epoxy resins

Article Publication Date

23-Jan-2024

COI Statement

The authors have no financial or personal competing interests to declare which could have influenced this manuscript.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

July 26, 2025
Challenges and Opportunities in High-Filled Polymer Manufacturing

Challenges and Opportunities in High-Filled Polymer Manufacturing

July 26, 2025

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025

Renewable Energy Powers Arctic Food Sustainability

July 26, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.