• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

NSF awards $500,000 to Pitt and CMU for engineering research on thermoelectric devices

Bioengineer by Bioengineer
April 8, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PITTSBURGH (April 4, 2019) — As much as half of all U.S. energy production each year is lost as waste heat, but new research led by the University of Pittsburgh Swanson School of Engineering, in collaboration with Carnegie Mellon University, seeks to make converting that heat back into usable electricity more efficient.

Feng Xiong, PhD, assistant professor of electrical and computer engineering at the Swanson School, and Jonathan Malen, professor of mechanical engineering at CMU, received a $500,000 award from the National Science Foundation to develop a thermoelectric semiconductor using tungsten disulfide to convert waste heat into energy. Using a novel doping approach, they will enhance the tungsten disulfide’s electrical conductivity while lowering its thermal conductivity–it will be able to efficiently conduct electricity without conducting heat. Tungsten disulfide is thin and flexible, making it a promising new option with diverse potential uses.

“Once we’ve developed an effective technique to improve thermoelectric efficiency, it will pave the way for the wide use of thermoelectric devices to scavenge heat from sources such as electronics and even the human body,” says Dr. Xiong. “A two-dimensional semiconductor like this would be useful for everything from high-performance 2D transistors to wearable electronics that harvest body heat for power.”

The project length is three years, with a possible extension into a fourth. The award is split between Dr. Xiong’s lab ($270,000) and Dr. Malen’s lab ($230,000). The team will work closely with local communities to encourage students from all backgrounds to explore engineering careers and foster interest in nanotechnology. Outreach efforts will include lab demonstrations, summer internships and career workshops.

“Climate change is a pressing concern in today’s world, and developing ways to use our resources more efficiently is critical,” says Dr. Xiong. “Converting waste heat into electricity could improve energy efficiency dramatically and sharply reduce greenhouse gas emissions. Through this project, we hope to encourage the next generation to explore even more innovative options for energy.”

###

Media Contact
Paul Kovach
[email protected]
https://www.engineering.pitt.edu/News/2019/Xiong-NSF-Grant/

Tags: Climate ChangeElectrical Engineering/ElectronicsEnergy SourcesEnergy/Fuel (non-petroleum)Grants/FundingSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.