• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel matrix-based slow-release urea improves crop production

Bioengineer by Bioengineer
May 7, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hefei Institutes of Physical Science (HFIPS)

The applied nitrogen in crop production is easily lost through ammonia emission and nitrogen leaching. Therefore, many attempts have been made on the development of novel slow-release fertilizers to reduce nitrogen loss and improve crop production.

A research team led by Prof. WU Yuejin from the Institute of Intelligent Machines of the Hefei Institutes of Physical Science developed a novel matrix-based slow-release urea (MSU) recently to improve nitrogen use efficiency in rice production, and they assessed the performances of it.

“MSU is a promising fertilizer for rice production,” said WU, “as less nitrogen loss and greater soil nitrogen availability can improve rice growth traits and physiological parameters in MSU.”

In this research, the researchers combined the organic and inorganic matrix-materials to improve the performance of MSU. These matrix-materials showed high adsorption and flocculation capacity, leading to the good slow-release performance of the MSU. Additionally, the matrix-materials contained available iron and sulfur, which promoted the nutritional balance of rice.

Consequently, application of the MSU increased agronomic nitrogen efficiency by 58%-64% and rice yield by 18%-21%.

“We have trust on a broad prospect for environment-friendly and efficient rice production of MSU,” said YANG Yang, a researcher in the team.

###

Media Contact
ZHAO Weiwei
[email protected]

Original Source

http://english.hf.cas.cn/new/news/rn/202104/t20210430_268760.html

Related Journal Article

http://dx.doi.org/10.1016/S1002-0160(21)60001-2

Tags: Agricultural Production/EconomicsAgricultureBiochemistryBiologyFertilizers/Pest Management
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Stimulants on Wheat Germination and Growth

Impact of Stimulants on Wheat Germination and Growth

September 9, 2025
Cerrado Ash Lowers Emissions, No Effect on Dung Beetles

Cerrado Ash Lowers Emissions, No Effect on Dung Beetles

September 9, 2025

Allicin-Silver Nanoparticle Hydrogel: A Breakthrough in Wound Healing

September 9, 2025

Parasite Infection Alters Rat Blood and Tissue Health

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bee-Sting Inspired Microneedles from Chung-Ang University Poised to Transform Drug Delivery

Antibody–Bottlebrush Prodrugs Revolutionize Targeted Cancer Therapy

Researchers Discover Innovative Approach to Unlocking the Power of Swarm Intelligence

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.