• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel matrix-based slow-release urea improves crop production

Bioengineer by Bioengineer
May 7, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hefei Institutes of Physical Science (HFIPS)

The applied nitrogen in crop production is easily lost through ammonia emission and nitrogen leaching. Therefore, many attempts have been made on the development of novel slow-release fertilizers to reduce nitrogen loss and improve crop production.

A research team led by Prof. WU Yuejin from the Institute of Intelligent Machines of the Hefei Institutes of Physical Science developed a novel matrix-based slow-release urea (MSU) recently to improve nitrogen use efficiency in rice production, and they assessed the performances of it.

“MSU is a promising fertilizer for rice production,” said WU, “as less nitrogen loss and greater soil nitrogen availability can improve rice growth traits and physiological parameters in MSU.”

In this research, the researchers combined the organic and inorganic matrix-materials to improve the performance of MSU. These matrix-materials showed high adsorption and flocculation capacity, leading to the good slow-release performance of the MSU. Additionally, the matrix-materials contained available iron and sulfur, which promoted the nutritional balance of rice.

Consequently, application of the MSU increased agronomic nitrogen efficiency by 58%-64% and rice yield by 18%-21%.

“We have trust on a broad prospect for environment-friendly and efficient rice production of MSU,” said YANG Yang, a researcher in the team.

###

Media Contact
ZHAO Weiwei
[email protected]

Original Source

http://english.hf.cas.cn/new/news/rn/202104/t20210430_268760.html

Related Journal Article

http://dx.doi.org/10.1016/S1002-0160(21)60001-2

Tags: Agricultural Production/EconomicsAgricultureBiochemistryBiologyFertilizers/Pest Management
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Women’s Heart Health Needs in Georgia

October 20, 2025
blank

Identifying Superior Walnut Genotypes in the Himalayas

October 20, 2025

Leptin-Sensing Brain Circuit Reduces Anxiety to Support Essential Behaviors: Eating, Exploring, and Resting

October 20, 2025

Prenatal BPA Alters YY1 and Affects Offspring Brain

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1266 shares
    Share 506 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    299 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Driven Pharmacometrics Revolutionize Malaria, TB Treatment

Transforming Algae and Crop Residues into High-Value Fuels and Nanomaterials

New Genetic Biomarkers Discovered for Sperm Dysfunction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.