• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Novel magnet design with magic mirror-like properties

Bioengineer by Bioengineer
June 14, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kouji Taniguchi

Researchers at Tohoku University have demonstrated the designability of novel magnets with magic mirror-like characteristics in organic-inorganic hybrid perovskite (OIHP)-type compounds.

OIHP-type compounds, a type of material used to construct solar cells, possess exceptional optical properties and have recently attracted worldwide interest. Researchers are keen to harness their structural diversity.

Although the superior optical properties of OIHPs have been mainly studied for their photoelectric characteristics, several OIHP-type compounds are known to function as magnets that transmit light. Combining the excellent optical characteristics with magnetism, OIHP-type compounds are a promising platform for designing functional magneto-optical materials.

A multi-institutional Japanese team, led by Kouji Taniguchi of Tohoku University’s Institute for Materials Research, developed a new magnet, in which brightness changes are determined by whether the material is viewed from the front or the back.

Taking advantage of OIHP-type compounds, they have designed low symmetry magnets, where magic mirror characteristics are expected, by introducing chiral organic molecules into layered crystal structure of inorganic magnets.

In addition, they found that the front and back of matter can be switched by a low magnetic field, which is obtainable by a ubiquitous permanent magnet.

“We hope the development of new magneto-optical materials based on the material design concept presented in this study will lead to the applications in spin photonic devices,” said Taniguchi.

###

Media Contact
Kouji Taniguchi
[email protected]

Original Source

https://www.tohoku.ac.jp/en/press/magnet_design_magic_mirror.html

Related Journal Article

http://dx.doi.org/10.1002/anie.202103121

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

August 27, 2025
AI-Driven Materials Map Accelerates Breakthroughs in Materials Discovery

AI-Driven Materials Map Accelerates Breakthroughs in Materials Discovery

August 27, 2025

Liverpool’s Professor Matt Rosseinsky Honored with Royal Medal for Groundbreaking Materials Science Research

August 27, 2025

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Many Advanced Cancer Patients Report Treatment Misaligned with Personal Care Goals

Advances in Neuroimaging and Digital Monitoring Illuminate Mood Instability in Bipolar Disorder

Study Links Biomolecular Condensates to Childhood Brain Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.