• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel insights into cholesterol regulation may lead to new therapies for heart disease

Bioengineer by Bioengineer
June 4, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Long-term goals hold promise for treatment of blood disorders and bone marrow regeneration

IMAGE

Credit: Houston Methodist

In a landmark study, scientists at Houston Methodist Research Institute discovered what makes white blood cell counts spike in individuals who have high cholesterol, possibly leading to new therapies for heart disease.

Led by Longhou Fang, Ph.D., an associate professor in the Center for Cardiovascular Regeneration, and his postdoctoral fellow Qilin Gu, Ph.D., the team looked at hypercholesterolemia, which is the type of high cholesterol that causes very high levels of LDL – the so-called “bad” cholesterol – to circulate in the blood.

They identified a new regulatory mechanism in zebrafish models responsible for this increase in white blood cells typically seen in people with these high LDL levels, which are known to increase a person’s risk for cardiovascular disease, the leading cause of morbidity and mortality in the U.S. and globally.

“Our findings may explain why this can happen,” Fang said. “This mechanism we identified activates a protein called SREBP2 that in turn leads to the development of more hematopoietic stem cells (HSPCs), which are the precursors to white blood cells and the process by which all mature blood cells are produced. We were able to show that targeting this protein using its antagonist can reduce the HSPC counts to bring down the white blood cell counts. This insight may lead to a new strategy to treat atherosclerotic cardiovascular disease.”

Additionally, Fang says finding this new pathway that controls the generation of HSPCs could be useful for treating blood disorders, such as leukemia and anemia, in the future. For instance, he says the plant-derived drug betulin, which is an SREBP2 inhibitor, could possibly be repurposed to mitigate the progression of leukemia. Even further down the line, he said this also holds promise for bone marrow regeneration using patient-derived hematopoietic stem cells, which would eliminate the need to find a donor.

Initially reported in an article titled “AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate” in the journal Science, the study has since been cited by the New England Journal of Medicine (NEJM) and Nature Reviews Cardiology.

In the NEJM editorial, the authors write, “This study certainly teaches us that cholesterol metabolism and inflammation are interconnected in the bone marrow environment through the transcription factor SREBP2.” They go on to say, “The most notable aspect of the study…is the implication of ‘cholesterol metabolism’ genes in the biologic makeup of HSPCs. These findings provide support for the hypothesis that cholesterol metabolism is a driver of inflammation in cardiovascular disease.”

Fang and his colleagues say their next steps are to continue exploring the role of cholesterol metabolism in hematopoiesis, saying that their findings bring them one step closer to their ultimate goal of generating patient-oriented HSPCs, which will be essential for the progress of regenerative and precision medicine.

###

Other researchers collaborating with Fang and Gu on this paper include Xiaojie Yang, Jie Lv, Bo Xia, Jiaxiong Zhang, Jun-dae Kim, Shu Meng, John P. Cooke and Kaifu Chen from Houston Methodist; Yongping Bai from Xiangya Hospital at Central South University in China; Ruoyu Wang, Feng Xiong, Wenbo Li, Miguel F. Diaz and Pamela L. Wenzel from UTHealth; Thomas P. Clements, Bhavna Tandon and Daniel S. Wagner from Rice University; Yury I. Miller and David Traver from University of California San Diego; and Leonard I. Zon from Harvard Medical School.

The work was supported by grants from the National Heart, Lung and Blood Institute (HL114734, HL132155, HL135737, HL133254), the American Heart Association (16BGIA27790081, 18TPA34250009, 17POST33410671), the National Institutes of Health (HL04880, DK49216, K01DK092365, R01DK111599, CA204468, GM125632) and the Cancer Prevention and Research Institute of Texas (RP110776, RR160083, RP120348, RP170002).

For more information about Houston Methodist, visit houstonmethodist.org. Follow us on Twitter and Facebook.

For more information: AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science. (March 8, 2019) Q. Gu, X. Yang, J. Lv, J. Zhang, B. Xia, J. Kim, R. Wang, F. Xiong, S. Meng, T.P. Clements, B. Tandon, D.S. Wagner, M.F. Diaz, P.L. Wenzel, Y.I. Miller, D. Traver, J.P. Cooke, W. Li, L.I. Zon, K. Chen, Y. Bai, L. Fang. DOI: https://doi.org/10.1126/science.aav1749

Media Contact
Lisa Merkl
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.aav1749

Tags: BiologyCardiologyCell BiologyCholesterolDevelopmental/Reproductive BiologyHematologyMedicine/HealthMolecular BiologyStroke
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

RNA Sequencing Uncovers Bovine Embryo Activation Regulators

October 18, 2025
Placental DNA Mutations, Stress, and Infant Emotions

Placental DNA Mutations, Stress, and Infant Emotions

October 18, 2025

Unraveling Gene Co-Expression in Trypanosoma cruzi Life Cycle

October 18, 2025

Mapping Hippocampal Proteins in Alzheimer’s Disease Model

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    286 shares
    Share 114 Tweet 72
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    121 shares
    Share 48 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Vision Issues in Autistic Children in Iraq

Boosting Nursing Informatics Literacy with Design Learning

Cardiovascular Risks in COPD Patients Using LABA or LAMA

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.