• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel immune checkpoints have applications for cancer, autoimmune disease treatment

Bioengineer by Bioengineer
May 20, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UConn researcher Laijun Lai has developed recombinant proteins and antibodies to combat autoimmune diseases and immunosuppression in cancer patients

IMAGE

Credit: UConn Photo

The immune system is a complex balancing act; if it overreacts or underreacts to foreign molecules, there can be serious health consequences.

For cancer patients, tumor progression is often accompanied by immunosuppression, meaning their bodies can’t fight off pathogens the way they should. By contrast, for people with autoimmune diseases like type 1 diabetes, rheumatoid arthritis, and multiple sclerosis, their immune systems overreact and attack the body itself.

Both of these reactions are influenced by a series of molecular checkpoints found in both immune cells and cancer cells. In immune cells, these checkpoints are supposed to prevent the immune system from mounting a response that is too strong and attacks healthy cells. For people with autoimmune diseases, these checkpoint molecules do not function properly. In cancer cells, they bind to immune cell receptors and inhibit their function to a degree that makes patients vulnerable to severe illness and infection.

Dr. Laijun Lai, a research professor in the Department of Allied Health Sciences in the College of Agriculture, Health and Natural Resources, has used bioinformatics and gene engineering techniques to develop a series of recombinant proteins and antibodies for a novel set of checkpoint molecules to address both of these concerns. Lai recently published a paper on the effectiveness of this invention in EMBO Molecular Medicine and has a patent pending for this invention.

Scientists made a major breakthrough when they identified several checkpoints, specifically PD-L1, PD-1 and CTLA-4, within the last decade. There are several FDA-approved medications that produce recombinant proteins to treat autoimmune disease, and antibodies to block the inhibitor activity of these checkpoints for cancer patients. However, not all patients respond to these treatments since there are many other checkpoints at work.

Using a bioinformatics approach, Lai identified three additional checkpoints: CD300c, ERMAP, and TAPBPL found in both immune cells and cancer cells. The bioinformatics approach identified the checkpoints that were most likely to be relevant based on their genetic and structural similarities to previously identified molecules.

Each molecule binds to a specific immune cell receptor to send an inhibitory signal and uses different mechanisms to check immune cell responses.

“The expression pattern of our molecules are different from existing checkpoint molecules and, probably, a different subset of patients will respond to them,” Lai says.

Lai’s group used genetic engineering to develop recombinant proteins from the genetic blueprint of these proteins. Lai has demonstrated that these recombinant proteins can successfully suppress T-Cell function in animal models of autoimmune diseases.

On the other side, Lai’s group developed antibodies that can block the inhibitory activity of these checkpoint molecules. He found the antibodies enhance antitumor immunity and inhibit tumor growth in animal models.

These therapies can be combined with exiting antibodies for PD-L1, PD-1 and CTLA-4, or on their own for patients who do not respond to those treatments.

“Our antibodies against these checkpoint molecules have the potential to be used in the treatment of cancer patients who are resistant to the anti-PD-1, PDL1, and CTLA-4 antibodies and can also be used in combination with existing antibodies to enhance the antitumor effects,” Lai says.

###

In addition to this recent publication in EMBO Molecular Medicine, Lai and his collaborators have published their findings about this technology in other high-impact journals including Frontiers in Immunology, and Cellular and Molecular Immunology.

Lai’s research was supported by more than $7 million total funding from the National Institutes of Health, Connecticut Innovations, and the American Cancer Society.

The next step for this innovation is to use their recombinant human proteins in clinical trials to treat autoimmune disease, develop human antibodies and continue their functional studies with the final goal of using them as novel therapeutics for cancer.

Media Contact
Jessica McBride, PhD
[email protected]

Original Source

https://today.uconn.edu/2021/05/novel-immune-checkpoints-have-applications-for-cancer-autoimmune-disease-treatment/

Related Journal Article

http://dx.doi.org/10.15252/emmm.202013404

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Case Study: Hypoglycemia Post-Gastric Bypass with Sacubitril/Valsartan

August 30, 2025

MicroRNAs: Key Regulators of Reproductive Apoptosis and Infertility

August 30, 2025

Uniform Guidelines for Pre-Transplant Kidney Biopsy Analysis

August 30, 2025

Novel Organoid Model for Primary Aldosteronism Imaging

August 30, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Case Study: Hypoglycemia Post-Gastric Bypass with Sacubitril/Valsartan

MicroRNAs: Key Regulators of Reproductive Apoptosis and Infertility

Uniform Guidelines for Pre-Transplant Kidney Biopsy Analysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.