• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Novel imaging method to visualize respiratory activity of 3D tissue models

Bioengineer by Bioengineer
April 28, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kaoru Hiramoto, et al.

Cells breathe, to an extent, exchanging gases, taking in energy sources from the environment and processing it. Now, researchers from Tohoku University in Japan have shone a light on the process in a new way.

Their demonstrated visualization method in model systems was made available online on March 12th in Biosensors and Bioelectronics, ahead of the June print edition.

The researchers used spheroids – cultured cells within a close-to-natural environment – to mimic a biological tissue using mesenchymal stem cells (MSCs). Due to MCSs’ ability to self-renew and differentiate into various tissues, they are of significant interest for use in regenerative medicine and to test different therapeutics in different tissue models.

They settled the spheroids on a gold electrode dosed in luminescent solution. The researchers applied stepped electric potential – the energy needed to convert oxygen – to the set up where the solution was then oxidized sensitized to produce luminescent, which is dependent on oxygen concentration. The spheroids glowed brightly, surrounded by a ring of darkness where oxygen concentration was low due to gas exchanges. They call the process potential step-based electrochemiluminescence (ECL) imaging.

“As living spheroids consume oxygen to produce energy, the respiratory activity was elegantly visualized by the distribution of luminescence around the spheroids,” said Kaoru Hiramoto of the JSPS Research Fellowship for Young Scientists, who developed the ECL imaging system.

The researchers used a digital camera to visualize multiple spheroids with a single shot, demonstrating both the high spatial resolution of their system, as well as the low background noise.

“The system offers high throughput analysis of spheroids, in addition to highly improving resolution of the images compared to conventional electrode array devices,” said co-corresponding authors Kosuke Ino and Hitoshi Shiku, assistant professor and professor in the Graduate School of Engineering, Tohoku University. “The system offers novel insights into electrochemical devices and imaging systems for cell spheroids.”

ECL imaging is still in the development phase, the researchers said. They plan to improve the sensitivity and selectivity, as well as analyze other data that might be collected in the system, such as cellular metabolites attached to the electrode. They also plan to use the system to investigate more complicated biological models, as well as patient-derived cell spheroids.

“To the best of our knowledge, this is the first attempt to visualize the respiratory activity of spheroids by direct conversion of oxygen concentration into ECL imaging,” Ino said. “The features of the proposed system – high spatial resolution with the ability for simultaneous imaging of multiple spheroids – are promising for transplantation research and drug screening utilizing cell spheroids.”

###

Media Contact
Kosuke Ino
[email protected]

Original Source

https://www.tohoku.ac.jp/en/press/novel_imaging_respiratory_activity_3d_tissue.html

Related Journal Article

http://dx.doi.org/10.1016/j.bios.2021.113123

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Climate impacts of biochar and hydrochar differ in boreal grasslands

October 27, 2025
Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

October 27, 2025

Exploring the Role of Water-Soluble Polymers in Wastewater Treatment

October 27, 2025

Dynamic Acoustic Mimicry through Parity Metamaterials

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering Hidden Carbon Dioxide Absorption: Russian Scientists Reveal Plant Roots’ Secret Role

Birth Size Influences Lifelong Education and Physical Function

Climate impacts of biochar and hydrochar differ in boreal grasslands

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.