• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 17, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel computer model supports cancer therapy

Bioengineer by Bioengineer
July 2, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the Life Sciences Research Unit (LSRU) of the University of Luxembourg have developed a computer model that simulates the metabolism of cancer cells. They used the programme to investigate how combinations of drugs could be used more effectively to stop tumour growth. The biologists now published their findings in the scientific journal EBioMedicine of the prestigious Lancet group.

The metabolism of cancer cells is optimised to enable fast growth of tumours. “Their metabolism is much leaner than that of healthy cells, as they are just focused on growth. However, this makes them more vulnerable to interruptions in the chain of chemical reactions that the cells depend on. Whereas healthy cells can take alternative routes when one metabolic path is disabled, this is more difficult for cancer cells,” explains Thomas Sauter, Professor of Systems Biology at the University of Luxembourg and lead author of the paper. “In our study, we investigated how drugs or combinations of drugs could be used to switch off certain proteins in cancer cells and thereby interrupt the cell’s metabolism.”

Therefore, the researchers created digital models of healthy and of cancerous cells and fed them with gene sequencing data from 10,000 patients of the Cancer Genome Atlas (TCGA) of the American National Cancer Institute (NCI). Using these models, the researchers were able to simulate the effects different active substances had on cells’ metabolisms so they could identify those drugs that inhibited cancer growth and at the same time didn’t affect the healthy cells. The models allow filtering out drugs that do not work or are toxic, so that only the promising ones are tested in the lab.

With the help of the models, they tested about 800 medications of which 40 were predicted to inhibit cancer growth. About 50 percent of these drugs where already known as anti-cancer therapeutics, but 17 of them are so far only approved for other treatments. “Our tool can help with the so-called “drug repositioning”, which means that new therapeutically purposes are found for existing medication. This could significantly reduce the cost and time for drug development,” Prof. Sauter said.

The particular advantage of the approach is the efficiency of its mathematical method. “We managed to create 10.000 patient models within one week, without the use of high-performance computing. This is exceptionally fast,” comments Dr. Maria Pacheco, postdoctoral researcher at the University of Luxembourg and first author of the study. In addition, Dr. Elisabeth Letellier, principal investigator at the Molecular Disease Mechanisms group at the University of Luxembourg and collaborator on the present study, further emphasizes “In the future, this could allow us to build models of individual cancer patients and virtually test drugs in order to find the most efficient combination. This could also bring fresh hope to patients for whom known therapies haven proven to be ineffective.”

So far, the models have been tested only for colorectal cancer, but the algorithm basically also works for all sorts of cancer, according to Thomas Sauter. He and his team are currently considering to develop commercial applications for their method.

###

Media Contact
Thomas Klein
[email protected]

Related Journal Article

https://wwwen.uni.lu/university/news/latest_news/novel_computer_model_supports_cancer_therapy
http://dx.doi.org/10.1016/j.ebiom.2019.04.046

Tags: BioinformaticsBiologycancerCell BiologyMedicine/HealthMetabolism/Metabolic DiseasesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Model Cuts Mortality in High-Risk Hip Fractures

January 17, 2026

Understanding Rehabilitation Goals for Hip Fracture Recovery

January 17, 2026

ALBI Score Links to Metabolically Healthy Obesity

January 17, 2026

Revolutionizing Meniscal Allografts with Patient-Specific 3D Models

January 17, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Nose Shape on Missile Warhead Performance

Innovative Model Cuts Mortality in High-Risk Hip Fractures

Understanding Rehabilitation Goals for Hip Fracture Recovery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.