• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 24, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel cathode design significantly improves performance of next-generation battery

Bioengineer by Bioengineer
December 11, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: HKUST

A team led by Cheong Ying Chan Professor of Engineering and Environment Prof. ZHAO Tianshou, Chair Professor of Mechanical and Aerospace Engineering and Director of HKUST Energy Institute, has proposed a novel cathode design concept for lithium-sulfur (Li-S) battery that substantially improves the performance of this kind of promising next-generation battery.

Li-S batteries are regarded as attractive alternatives to lithium-ion (Li-ion) batteries that are commonly used in smartphones, electric vehicles, and drones. They are known for their high energy density while their major component, sulfur, is abundant, light, cheap, and environmentally benign.

Li-S batteries can potentially offer an energy density of over 500 Wh/kg, significantly better than Li-ion batteries that reach their limit at 300 Wh/kg. The higher energy density means that the approximate 400km driving range of an electric vehicle powered by Li-ion batteries can be substantially extended to 600-800km if powered by Li-S batteries.

While exciting results on Li-S batteries have been achieved by researchers worldwide, there is still a big gap between lab research and commercialization of the technology on an industrial scale. One key issue is the polysulfide shuttle effect of Li-S batteries that causes progressive leakage of active material from the cathode and lithium corrosion, resulting in a short life cycle for the battery. Other challenges include reducing the amount of electrolyte in the battery while maintaining stable battery performance.

To address these issues, Prof. Zhao’s team collaborated with international researchers to propose a cathode design concept that could achieve good Li-S battery performance.

The highly oriented macroporous host can uniformly accommodate the sulfur while abundant active sites are embedded inside the host to tightly absorb the polysulfide, eliminating the shuttle effect and lithium metal corrosion. By bringing up a design principle for sulfur cathode in Li-S batteries, the joint team increased the batteries’ energy density and made a big step towards the industrialization of the batteries.

“We are still in the middle of basic research in this field,” Prof. Zhao said. “However, our novel electrode design concept and the associated breakthrough in performance represent a big step towards the practical use of a next-generation battery that is even more powerful and longer-lasting than today’s lithium-ion batteries.”

###

Their research work was recently published in Nature Nanotechnology under the title “A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites”.

Team members from HKUST include Prof. Zhao and his current PhD students ZHAO Chen, ZHANG Leicheng, and former PhD student REN Yuxun (2019 graduate). Other collaborators include researchers from Argonne National Laboratory and Stanford University in the US, Xiamen University in Mainland China, and Imam Abdulrahman Bin Faisal University in Saudi Arabia.

Media Contact
Dorothy Yip
[email protected]

Original Source

https://seng.ust.hk/news/20201201/novel-cathode-design-significantly-improves-performance-next-generation-battery

Related Journal Article

http://dx.doi.org/10.1038/s41565-020-00829-5

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Nanotechnology/Micromachines
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Regulating the ribosomal RNA production line

January 22, 2021
IMAGE

A professor from RUDN University developed new liquid crystals

January 22, 2021

New technique builds super-hard metals from nanoparticles

January 22, 2021

No more needles for diagnostic tests?

January 22, 2021
Next Post
IMAGE

'The robot made me do it': Robots encourage risk-taking behaviour in people

IMAGE

Double element co-doped carbon quantum dots enhance photocatalytic efficiency

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In