• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel bacterial acid tolerance system sheds light on development of antimicrobials

Bioengineer by Bioengineer
March 20, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ZHAO Mohan


Growth ability at acidic conditions is important to bacteria. Enteric bacteria such as Escherichia coli and Salmonella can colonize and cause disease in the host’s intestinal tract, but they have to combat acidic environments during the whole process of invading the host.

The stomach, with pH value as low as 1.5-2.5, is recognized as a natural antibiotic barrier. After entering into the small intestine, E. coli will encounter a less acidic environment (with pH value of 4-6), reproduce rapidly, and cause disease to the host ultimately.

Recently, a research team led by Prof. XIAN Mo and Prof. ZHAO Guang from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) discovered a novel bacterial acid tolerance system, which confers the growth capability to E. coli at pH of 4.2.

Up to now, five acid resistance systems have been reported. These acid resistance systems can enable E. coli to survive in gastric acid for hours, but they play no role in rapid multiplication of E. coli under moderate acidic conditions.

CpxA, the newly discovered system, can sense acidification directly through protonation of histidine residues. It will also activate its cognate regulator protein CpxRx to stimulate the expression of fabA and fabB genes for biosynthesis of unsaturated fatty acids, increasing unsaturated fatty acid contents in membrane lipid.

Changes in membrane lipid composition lower the fluidity and proton permeability of cell membrane, increasing the intracellular pH homeostasis.

Experiment results showed that E. coli mutant deficient in this system cannot grow in mouse intestine. Besides E. coli, this acid tolerance system also exists in pathogenic bacteria including Salmonella, Shigella, Vibrio cholerae, Yersinia pestis and Pseudomonas aeruginosa, which may be a new target for the development of antimicrobials.

The related findings were published in Nature Communications on Mar. 20.

###

This work was supported by the National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province.

Media Contact
CHENG Jing
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-15350-5

Tags: BacteriologyBiologyBiomedical/Environmental/Chemical Engineering
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Rice miRNA: Key Regulator in Fungal Interactions

December 3, 2025
Human Impact Alters Leopard and Ungulate Dynamics

Human Impact Alters Leopard and Ungulate Dynamics

December 3, 2025

Adaptive Microsatellite Variants in Indian Yak Populations

December 2, 2025

Guide to Single-Cell RNA Transcriptomics Unveiled

December 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.