• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel autism mouse model based on an epigenetic gene developed

Bioengineer by Bioengineer
January 30, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers say epigenetic changes negatively affect gene, resulting in neurological disorder; mouse model offers new way to test potential therapeutic interventions

IMAGE

Credit: Alysson Muotri, UC San Diego


The causes of autism spectrum disorder (ASD) are diverse and to some extent, unknown. But without doubt, they are complex, layered and deeply nuanced. In a study published January 17, 2019 in Translational Psychiatry, researchers at University of California San Diego School of Medicine describe how, in a novel mouse model, epigenetic regulation negatively impacts a downstream gene specifically involved in neurodevelopment and associated behaviors.

“We only had clinical and genetic evidence that the gene was related to autism. Now, with this mouse model, we have direct causal evidence linking this gene with neuronal molecular and cellular alterations leading to ASD-like behavior,” said senior author Alysson R. Muotri, PhD, professor in the UC San Diego School of Medicine departments of Pediatrics and Cellular and Molecular Medicine, director of the UC San Diego Stem Cell Program and a member of the Sanford Consortium for Regenerative Medicine.

“This animal model might be useful when testing potential therapeutic alternatives for this subgroup of ASD in people. Our plans also include the development of human brain organoids derived from reprogrammed cells from ASD individuals.”

Epigenetics refers to changes in organisms caused by modification of gene expression rather than alteration of the genetic code itself. Epigenetic control of chromatin structure — how DNA is efficiently packaged within a cell’s nucleus — mediates many critical cellular processes, from gene expression to cell division and neural development.

“The importance of epigenetic regulatory mechanisms is increasingly appreciated in human neurodevelopment and neurodevelopmental conditions, such as ASD,” said Muotri. “Indeed, mutations in chromatin-related epigenetic genes can cause several neurological disorders.”

Muotri and colleagues looked specifically at a group of proteins called the SET domain which write instruction code for histone methylation, a process of adding or subtracting proteins to increase or decrease gene transcription. It is critical to the regulation of gene expression and the ability of different cells to express different genes.

SET domain proteins mediate a gene called SETD5, which is essential to neurodevelopment and has been categorized, in clinical genetic studies, as a top ASD-risk gene, “but until now there was no causal relation between SETD5 loss of function and alterations in neurodevelopment,” said Muotri.

In a mouse model with haploinsufficiency of SETD5 (only one functional copy of the gene), the researchers found that cortical neurons displayed morphological alterations and reduced connectivity. “As a consequence, the neuronal networks showed a delayed in development in these mice compared to controls,” said Muotri.

The researchers then traced which genes were affected, identifying neurodevelopmental pathways that are targeted by the SETD5 gene. They hypothesized that the affected gene expression would likely result in altered behavior and, in fact, observed abnormal patterns of social interaction and “autism-compatible” behavior in the mice.

Magnetic resonance imaging analyses revealed subtle anatomical differences in the mutant adult brain of affected mice. A more detailed anatomical investigation revealed aberrant cortical lamination — a phenotype observed in other ASD mouse models as well.

The Muotri lab has developed a large collection of cells carrying unexplored ASD-risk genes generated from the Tooth Fairy Project.

###

Co-authors include: Spencer M. Moore, Jason S. Seidman, Richard Gao, Alex Savchenko, Ty D. Troutman, Yohei Abe, Josh Stender, Sicong Wang and Christopher K. Glass, UC San Diego; Jacob Ellegood, Hospital for Sick Children, Toronto, CA; Daehoon Lee and Hoonkyo Suh, Cleveland Clinic; Bradley Voytek, UC San Diego and Kavli Institute for Brain and Mind; and Jason P. Lerch, Hospital for Sick Children and University of Toronto.

Disclosure: Alysson Muotri is a co-founder and has an equity interest in TISMOO, a company dedicated to genetic analysis focusing on therapeutic applications customized for autism spectrum disorder and other neurological disorders with genetic origins. The terms of this arrangement have been reviewed and approved by the University of California San Diego according to its conflict of interest policies.

Media Contact
Scott LaFee
[email protected]
858-249-0456

Tags: GeneticsMedicine/HealthneurobiologyPediatrics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Lanthipeptides Linked to Genetic Exchange in Prokaryotes

December 18, 2025
blank

Comparing LEGU-1 and LGMN Interactions with Proton Pump Inhibitors

December 18, 2025

Two-Decade Shift in Parasite Communities of Paralonchurus Brasiliensis

December 18, 2025

Synovial Parasitosis, Biomarkers, and Osteoarthritis Links Explored

December 18, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Single-Cell Transcriptomics Unravels Carotid Artery Diversity

Revolutionizing Smart Manufacturing with AI and IoT

IL-17A Raises in Diabetic Wounds, Harms Keratinocytes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.