• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Non-invasive neurotechnology reduces symptoms of insomnia and improves autonomic nervous system function

Bioengineer by Bioengineer
January 27, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WINSTON-SALEM, N.C. – Jan. 27, 2023 – A good night’s sleep is crucial to health and well-being. Numerous research studies have shown that insomnia can increase the risk of cardiovascular events, obesity, diabetes and other illnesses. Now, a new study from researchers at Wake Forest University School of Medicine shows significant improvements in not only sleep quality, but also in improved autonomic nervous system function using a closed-loop, acoustic stimulation neurotechnology.

Cereset Research with Standard Operating Procedures (CR-SOP)

Credit: Wake Forest University School of Medicine

WINSTON-SALEM, N.C. – Jan. 27, 2023 – A good night’s sleep is crucial to health and well-being. Numerous research studies have shown that insomnia can increase the risk of cardiovascular events, obesity, diabetes and other illnesses. Now, a new study from researchers at Wake Forest University School of Medicine shows significant improvements in not only sleep quality, but also in improved autonomic nervous system function using a closed-loop, acoustic stimulation neurotechnology.

The study is published online in Global Advances in Integrative Medicine and Health.

Cereset ResearchTM with Standard Operating Procedures (CR-SOP) is the evolution of HIRREM®, or high-resolution, relational, resonance-based electroencephalic mirroring, a noninvasive, closed-loop technology that uses scalp sensors to monitor brainwaves and software algorithms to translate specific frequencies into audible tones of varying pitch.

These tones linked to brainwaves are echoed back in real time via earbuds. This allows the brain a chance to listen to itself, to look at itself in an acoustic mirror.

“CR-SOP allows the brain to reset from stress patterns that contribute to insomnia,” said Charles H. Tegeler, M.D., chair of neurology at Wake Forest University School of Medicine. “During the intervention, the brain continuously updates with respect to its own activity patterns, resulting in auto-calibration or self-optimization.”

While still echoing brainwaves, as with legacy HIRREM, CR-SOP uses an updated platform with faster computers, new sensors and hardware, and computer management during the protocols. This results in faster echoing of brainwaves, shorter sessions and reduced dependence on technologist expertise.

In this randomized and controlled study of 22 adults, researchers compared changes on the Insomnia Severity Index (ISI), a self-report instrument to assess insomnia symptoms. About half of the participants received 10 sessions of CR-SOP linked to brainwaves while the control group received 10 sessions of randomly generated auditory tones. Sessions were received over a mean of 15.3 days. Researchers also recorded heart rate and blood pressure to assess autonomic cardiovascular regulation. 

After completion of the sessions and at follow-up visits up to six weeks later, subjects in the CR-SOP group reported reduced insomnia symptoms. They also showed statistically and clinically significant improvements in autonomic function across multiple measures such as heart rate variability (HRV) and baroreflex sensitivity (BRS) compared to those who received random tones. HRV is a powerful biometric that reflects the health of the autonomic nervous system, and BRS measures blood pressure regulation. HRV is correlated with a host of important health and well-being outcomes.

These findings are in line with previous HIRREM research that showed a reduction in insomnia symptoms.

According to Tegeler, the study also used standard operating procedures so that all subjects received the same sequence of protocols. Taken together, this greatly increases the scalability of this approach so that more people might have access, more quickly, he said.

“Closed-loop acoustic stimulation can improve sleep as well as autonomic function in those who suffer from insomnia,” Tegeler said. “This pilot study demonstrates these benefits with CR-SOP from sessions received over a short period. This is also an important step in showing the intervention’s potential scalability for treating more people.”

Ongoing clinical trials are focused on stress and anxiety in health care workers as well as caregivers. 

HIRREM and Cereset Research are registered trademarks of Brain State Technologies based in Scottsdale, Arizona and have been licensed to Wake Forest University School of Medicine for collaborative research since 2011.

This study was supported by research grants from The Susanne Marcus Collins Foundation Inc. and the Wake Forest Clinical and Translational Science Institute.



Journal

Global Advances in Integrative Medicine and Health

DOI

10.1177/27536130221147475

Method of Research

Randomized controlled/clinical trial

Subject of Research

People

Article Title

Cereset Research Standard Operating Procedures for Insomnia: A Randomized, Controlled Clinical Trial

Article Publication Date

18-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Tsimané woman and child

For clues to healthy brain aging, look to the Bolivian Amazon

March 20, 2023
Dr. Donald Kohn

UCLA-led study uses base editing to correct mutation that causes rare immune deficiency

March 20, 2023

Scientists use tardigrade proteins for human health breakthrough

March 20, 2023

Inbreeding contributes to decline of endangered killer whales

March 20, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    61 shares
    Share 24 Tweet 15
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Minderoo-Monaco Commission on Plastics and Human Health issues sweeping new report

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In