• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Non-invasive imaging technique valid for identifying small airway disease in lung

Bioengineer by Bioengineer
March 14, 2019
in Health
Reading Time: 4 mins read
1
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Discovery holds promise for developing urgently needed new therapies in COPD

IMAGE

Credit: Michigan Medicine/Manifest

Chronic obstructive pulmonary disease (COPD), an inflammatory disease of the small airways in the lungs, affects 16 million Americans and is the fourth leading cause of death in the United States, according to the National Heart Lung and Blood Institute (NHLBI). Identifying small airway disease in its earliest stages, when it is most treatable, could potentially lead to new drug therapies for those with COPD, researchers say.

However, it has been difficult for physicians to identify abnormalities of the small airways non-invasively; the tiny bronchioles that are first damaged in COPD, which are less than 2 mm in internal diameter, are simply too small to be visualized on CT imaging, and are not well-reflected by pulmonary function tests.

In a landmark study funded by the NHLBI, an international team of researchers led by Michigan Medicine confirmed the ability of a non-invasive imaging biomarker to identify small airway damage in COPD.

In the American Journal of Respiratory and Critical Care Medicine, the researchers report on the ability of a relatively new technique, called Parametric Response Mapping (PRM), to identify small airway abnormality in COPD. Invented at Michigan Medicine, the University of Michigan’s academic medical center, by Brian Ross, Ph.D., professor of radiology and biological chemistry and Craig Galban, Ph.D., associate professor of radiology, PRM is a non-invasive technique that measures lung density during inhalation and exhalation.

The team examined lung tissue from patients with COPD undergoing lung transplantation as well as those with healthy donated tissue. Researchers then mapped those samples back to the CT scans taken before surgery.

They confirmed that PRM was able to non-invasively identify small airway loss, narrowing and obstruction. This technical feat required the collaboration of large, multi-disciplinary teams of radiologists, pulmonologists, thoracic surgeons and pathologists in multiple locations across two countries, all activated around the clock due to the unpredictable nature of transplant surgery.

Senior author MeiLan Han, M.D., a lung specialist and professor of internal medicine at the University of Michigan, says, “Now we have confidence in our ability to identify airway disease when imaging COPD patients. PRM is already clinically available and used by University of Michigan clinical teams to assess patients with COPD. This is what we mean by bench to bedside medicine.”

While these studies were performed in patients with severe disease, in another NHLBI funded study, COPDGene, the PRM-defined small airway abnormalities have been detected on CT scans of patients with milder disease and help to predict patients who will lose lung function. Han notes, however, “We still need to validate the type of airway disease the PRM technique identifies in patients with milder disease. That type of lung tissue is more difficult to obtain, but we are working on techniques that would allow us to use smaller amounts of lung tissue to make such studies feasible.”

Currently, there is no cure for or way to reverse COPD. Lifestyle changes, like quitting smoking, and treatment with bronchodilators and inhaled steroids can help expand airways and reduce inflammation. Surgery to remove damaged lung tissue and lung transplantation are options for some patients with severe disease. By helping to identify patients at risk for disease progression, PRM can serve as a non-invasive measure to aid clinical trials of new therapeutics, the researchers concluded.

“These results illustrate the importance of developing non-invasive techniques for improving diagnostic capabilities and advancing new therapies needed to tackle this devastating disease,” says James Kiley, Ph.D., director of the Division of Lung Diseases at the National Heart, Lung, and Blood Institute. “The refinement of this and similar approaches could also advance the study of COPD at its earliest stages of development.”

###

Additional authors: Vasilescu DM, PhD, University of British Columbia, Vancouver, Canada; Martinez FJ, MD, Weill Cornell Medical College, New York, NY; Marchetti N, DO, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Galban CJ, PhD, University of Michigan, Ann Arbor, MI; Hatt, C, PhD, University of Michigan, Ann Arbor, MI and Imbio, Minneapolis, MN; Meldrum C, PhD, University of Michigan, Ann Arbor, MI; Dass Chandra, MD, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Tanabe N, MD, Kyoto University, Kyoto, Japan; Reddy R, MD, University of Michigan, Ann Arbor, MI; Lagstein A, MD, University of Michigan, Ann Arbor, MI; Ross BD, PhD, University of Michigan, Ann Arbor, MI; Labaki WW, MD, University of Michigan, Ann Arbor, MI; Murray S, ScD, University of Michigan, Ann Arbor, MI; Meng X, University of Michigan, Ann Arbor, MI; Curtis JL, MD, University of Michigan, Ann Arbor, MI and VA Ann Arbor Healthcare System, Ann Arbor, MI; Hackett TL, PhD, University of British Columbia, Vancouver, Canada; Kazerooni E, MD, University of Michigan, Ann Arbor, MI; Criner GJ, MD, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Hogg JC, MD, University of British Columbia, Vancouver, Canada.

Funding: Han: NIH RO1 HL122328, NIH K24 HL138188; Vasilescu: Canadian Thoracic Society and Alpha-1 Foundation; Hackett: Canadian Institutes for Health Research and Michael Smith Foundation for Health Research; Curtis: Department of Veterans Affairs Merit Review I01 CX000911, NIH RO1 AI120526 and NIH R21 AI 117371; Ross: NIH R35 CA197701.

Media Contact
Shantell M. Kirkendoll
[email protected]

Related Journal Article

http://dx.doi.org/10.1164/rccm.201811-2083OC

Tags: Medicine/HealthPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Malonylation Site Detection with AlphaFold2

October 5, 2025

Assessing Drug Interactions in Neonatal Care Software

October 5, 2025

Unveiling AGC2 Modulators through Advanced Assay Techniques

October 5, 2025

Exploring Home-based HPV Self-Sampling Acceptance in Cameroon

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

Boosting Malonylation Site Detection with AlphaFold2

Assessing Drug Interactions in Neonatal Care Software

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.