• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Noise-cancelling’ qubits developed at UChicago to minimize errors in quantum computers

Bioengineer by Bioengineer
May 26, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Despite their immense promise to solve new kinds of problems, today’s quantum computers are inherently prone to error. A small perturbation in their surrounding environment— a change in temperature, pressure, or magnetic field, for instance—can disrupt their fragile computational building blocks, called qubits.

Qubits to minimize errors

Credit: UChicago – Bernien Lab

Despite their immense promise to solve new kinds of problems, today’s quantum computers are inherently prone to error. A small perturbation in their surrounding environment— a change in temperature, pressure, or magnetic field, for instance—can disrupt their fragile computational building blocks, called qubits.

Now, researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) have developed a new method to constantly monitor the noise around a quantum system and adjust the qubits, in real-time, to minimize error.

The approach, described in Science, relies on spectator qubits: a set of qubits embedded in the computer with the sole purpose of measuring outside noise rather than storing data. The information gathered by such spectator qubits can then be used to cancel out noise in vital data-processing qubits.

Asst. Prof. Hannes Bernien, who led the research, likens the new system to noise-cancelling headphones, which continuously monitor surrounding noises and emit opposing frequencies to cancel them out.

“With this approach, we can very robustly improve the quality of the data qubits,” said Bernien. “I see this as being very important in the context of quantum computing and quantum simulation.”

 

A daunting challenge
As existing quantum computers are scaled up, the challenge of noise and error has grown. The problem is two-fold: Qubits easily change in response to their environment, which can alter the information stored inside them and lead to high rates of error. In addition, if a scientist measures a qubit, to try to gauge the noise it has been exposed to, the qubit state collapses, losing its data.

“It’s a very daunting and difficult task to try to correct the errors within a quantum system,” said Bernien.

Theoretical physicists had previously proposed a solution using spectator qubits, a set of qubits that don’t store any necessary data but could be embedded within a quantum computer. The spectator qubits would track changes in the environment, acting like the microphone contained within noise-cancelling headphones. A microphone, of course, detects only sound waves while the proposed spectator qubits would respond to any environmental perturbations capable of altering qubits.

 

Two kinds of qubits for noise cancellation
Bernien’s group set out to demonstrate that this theoretical concept could be used to cancel out noise in a neutral atom quantum array— their preferred quantum computer.

In a neutral atom quantum processor, atoms are suspended in place using laser beams called optical tweezers, which Bernien helped develop, earning him accolades such as the 2023 New Horizons in Physics Prize by the Breakthrough Prize Foundation. In large arrays of these suspended atoms, each acts as a qubit, capable of storing and processing information within its superposition state.

In 2022, Bernien and colleagues first reported the ability to make a hybrid atomic quantum processor containing both rubidium and cesium atoms. Now, they’ve adapted that processor so that the rubidium atoms act as data qubits while the cesium atoms are spectator qubits. The team designed a system to continuously read out real-time data from the rubidium atoms and, in response, tweak the cesium atoms with microwave oscillations.

The challenge, Bernien said, was ensuring that the system was quick enough— any adjustments to the rubidium atoms had to be nearly instantaneous.

“What’s really exciting about this is that not only is it minimizing any noise for the data qubits, but it’s an example of actually interacting with a quantum system in real time,” said Bernien.

 

Proof-of-principle
To test their error minimization approach, Bernien’s group exposed the quantum array to magnetic field noise. They showed that the cesium atoms correctly picked up this noise and their system then cancelled it out in the rubidium atoms in real time.

However, the research group says the initial prototype is just a starting place. They’d like to try increasing the amount of noise and varying the types of perturbations and testing whether the approach holds up.

“We have exciting ideas on how to improve the sensitivity of this system by a large factor but it’s going to take more work to get it implemented,” said Bernien. “This was a great starting place.”

Eventually, Bernien imagines a system of spectator qubits could run constantly in the background of any neutral atom quantum computer and also quantum computers of other architectures, minimizing the error as the computer stores data and makes computations.

 



Journal

Science

DOI

10.1126/science.ade5337

Article Title

Mid-circuit correction of correlated phase errors using an array of spectator qubits

Article Publication Date

25-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Oncoscience

UPR-induced ovarian cancer cell fusion: a mechanism favoring drug resistance?

May 26, 2023
neutron star insight from particle collisions

First measurements of hypernuclei flow at RHIC

May 26, 2023

Fractons as information storage: Not yet quite tangible, but close

May 26, 2023

Emerging transmutation of quantum scars in photonic crystals

May 26, 2023

POPULAR NEWS

  • the University of Haifa

    Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    73 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In