• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

No assumptions needed to simulate petroleum reservoirs

Bioengineer by Bioengineer
June 5, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hydrocarbons trapped within porous media are easier to model with computer simulations than researchers previously assumed — a discovery that opens up new possibilities for thermodynamics research

Hidden deep below our feet, petroleum reservoirs are made up of hydrocarbons like oil and natural gas, stored within porous rock. These systems are particularly interesting to physicists, as they clearly show how temperature gradients between different regions affect the gradients of fluid pressures and compositions. However, because these reservoirs are so hard to access, researchers can only model them using data from a few sparse points, meaning many of their properties can only be guessed at. In a new study published in EPJ E, physicists from France and Vietnam, led by Guillaume Galliero at the University of Pau, have found that this guesswork actually isn’t necessary. They show that if the right choices are made when constructing models, no assumptions are needed in order to calculate the impact of temperature gradients on pressure and composition gradients.

Ultimately, Galliero’s team developed an equation that fully expresses the pressure gradient of petroleum reservoirs, which they then used to determine variations in hydrocarbon composition throughout the mixture. Drawing on this main equation, they were able to identify several special cases where the pressure gradient is influenced by other properties, including the residual entropy of the fluid – the point at which the permeability of the rock becomes lower than a certain threshold. When this happens, temperature gradients generate pressure gradients which are proportional to this residual entropy. This implies that the pressure gradients across small parts of the fluid are generated by the balance between their own residual entropy, and that of the fluid as a whole.

Galliero and his colleagues started from basic principles of thermodynamics, then validated their conclusions using computer simulations. Their work could prove invaluable to petroleum engineers and geoscientists exploring the intriguing thermodynamic properties of petroleum reservoirs.

###

Reference

F. Montel, H. Hoang, G. Galliero (2019), Linking up pressure, chemical potential and thermal gradients, Eur. Phys. J. E 42:65. DOI 10.1140/epje/i2019-11821-0

Media Contact
Sabine Lehr
[email protected]
http://dx.doi.org/10.1140/epje/i2019-11821-0

Tags: Chemistry/Physics/Materials Sciences
Share13Tweet7Share2ShareShareShare1

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    130 shares
    Share 52 Tweet 33
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Philothamnus Snakes: Breeding, Communication, and Combat

Integrating Life Stories for Patient-Centered Care

Tailored Protein Advice Boosts Nutrition in Older Adults

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.