• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ningaloo corals are ill-equipped to handle future climate change

Bioengineer by Bioengineer
June 10, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The relatively pristine coral populations of WA’s inshore Kimberley region are better equipped to survive ocean warming than the World Heritage-listed Ningaloo Marine Park, according to a new Curtin University study.

Lead researcher PhD student Arne Adam

Credit: Curtin University

The relatively pristine coral populations of WA’s inshore Kimberley region are better equipped to survive ocean warming than the World Heritage-listed Ningaloo Marine Park, according to a new Curtin University study.

Despite previous research predicting coral species would move south to cooler waters to protect themselves, the new study – published in Molecular Ecology – has found this may not hold true on the West Coast of Australia.

The new study, which investigated coral population connectivity and adaptive capacity, has found corals growing in different reef systems in north-western Australia are genetically isolated from each other.

The findings were based on the genetic data of a reef-building coral, Acropora digitifera, sampled from five well-known reef systems. The study sought to find out how connected these reef systems are, and how resilient this coral is to different future climate scenarios in different regions.

Lead researcher PhD student Arne Adam, from the Curtin School of Molecular and Life Sciences, said climate change had caused widespread loss of species biodiversity and ecosystem productivity across the globe, particularly on tropical coral reefs. He said the results suggest corals from northern reefs in WA are isolated from each other, meaning that corals may not be able to move to more southern reef regions.

“Having segregated reefs means that it’s hard for the corals to move between the regions. If corals at one reef die out, it is unlikely that this reef will be rescued by newcomer corals from neighbouring reefs,” Mr Adam said.

Mr Adam said that previous research had indicated that southern regions would become hotspots for coral biodiversity in the future, however based on this data, it is unknown if corals at southern regions have the genetic adaptations needed to survive the effects of a rapidly warming ocean.

“We found corals growing in northern reef regions such as the inshore Kimberley – including Adele Island and Beagle Reef – are better adapted to handle future ocean warming, whilst the coral community at Ningaloo Reef is in danger of losing diversity because they are not well-equipped to survive a warming ocean,” Mr Adam said.

Senior researcher Dr Zoe Richards, also from the School of Molecular and Life Sciences, said the results supported the notion that reef systems in WA were both geographically isolated and highly adapted to the current local environmental conditions.

“For the Ningaloo Reef system, this combination of traits could spell disaster under extreme future climate scenarios,” Dr Richards said.

“This study helps to predict which coral communities may be resilient or vulnerable to future climate change, and that information is important for cost-effective conservation planning.”

The study included data from Ashmore Reef, the Rowley Shoals, the inshore Kimberley, and reefs within the Ningaloo Coast World Heritage Area. It was a collaborative study with scientists at the Australian Marine Science Institute in Perth (AIMS). This research was funded by the Australian Research Council, Curtin University and the PhD Science Industry Scholarship.

Woodside Energy and the Northwest Shoals to Shore Research Program, supported by Santos Ltd, funded offshore fieldwork for this project. Data was analysed and interpreted with funding support to Mr Adam through the Woodside Coral Reef Research Fellowship.

The full paper, titled ‘Population connectivity and genetic offset in the spawning coral Acropora digitifera in Western Australia’, is available here.



Journal

Molecular Ecology

DOI

10.1111/mec.16498

Method of Research

Randomized controlled/clinical trial

Subject of Research

Not applicable

Article Title

Population connectivity and genetic offset in the spawning coral Acropora digitifera in Western Australia’

Article Publication Date

10-Jun-2022

COI Statement

N/A

Share12Tweet7Share2ShareShareShare1

Related Posts

Illustration compares the traditional method of ethylbenzene dehydrogenation with the new method.

New styrene production method improves stability, dehydrogenation activity

July 7, 2022
VX detecting protein

Ronald Koder-led CCNY team creates first ever VX neurotoxin detector

July 6, 2022

UTA selects Kate C. Miller as new VP for research and innovation

July 6, 2022

Upside-down design expands wide-spectrum super-camera abilities

July 6, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyVirusViolence/CriminalsWeather/StormsUrogenital SystemUrbanizationVaccinesVaccineWeaponryUniversity of WashingtonVehiclesZoology/Veterinary Science

Recent Posts

  • Electric vehicle buyers want rebates, not tax credits
  • The key is in the coating: Multilayered coating to improve the corrosion resistance of steel
  • A new method developed by researchers from the Josep Carreras Institute predicts childhood hyperdiploid B-ALL relapse risk
  • ORNL’s Wagner, Curran elevated to Senior Members of IEEE
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....