• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NIH researchers home in on genes linked to age-related macular degeneration

Bioengineer by Bioengineer
February 11, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings point to potential treatment strategies

IMAGE

Credit: National Eye Institute

National Eye Institute scientists led a collaborative study and zeroed in on genes associated with age-related macular degeneration (AMD), a leading cause of vision loss and blindness among people age 65 and older. These findings provide a more expanded and in-depth picture of the genetic contributions to AMD, and they present new pathways for treatment development. The study was published Feb. 11 in Nature Genetics.

“If we were conducting a criminal investigation, prior research would have localized different crime syndicates to 52 streets within 34 zip codes. These latest findings identify actual suspects–direct targets that we can more closely investigate,” said the study’s lead investigator Anand Swaroop, Ph.D., chief of the Neurobiology-Neurodegeneration and Repair Laboratory at NEI, which is part of the National Institutes of Health.

Previously, Swaroop and colleagues had compared populations of people with and without AMD and identified 34 small genomic regions–called loci–and 52 genetic variants within these loci that were significantly associated with AMD. “However, as with other common and complex diseases, most of the variants turned out not to be present in protein-coding regions of the genome, leaving us to wonder how they were having a biological effect on AMD,” said Swaroop.

The researchers explored whether the variants might regulate AMD-relevant genes, possibly at promoters, which are sequences within DNA that turn genes on, or enhancers, which increase the activity of promoters. If the variants did indeed regulate gene expression, a key question remained: what were the genes that the variants were regulating?

Swaroop’s team studied 453 retinas, the eye tissue affected by AMD, from deceased human donors with and without AMD. The analysis involved sequencing each retina’s ribonucleic acid (RNA), the messenger molecule that carries instructions from DNA for making proteins. A total of 13,662 protein-coding and 1,462 non-protein coding RNA sequences were identified.

To search for the genetic variants regulating gene expression in the retina, they used expression quantitative trait loci (eQTL) analysis. Computational methods allowed the researchers to detect patterns between the genes expressed in the retina and a pool of more than 9 million previously identified genetic variants. Specifically, they looked for variants with a high probability of being responsible for variations in gene expression among people with and without AMD. The analysis pointed to target disease genes at six of the 34 AMD loci identified in the earlier research.

In addition, integration of this data with earlier AMD studies identified three additional target AMD genes, which had never before been shown to play a role in AMD. This analysis also suggested as many as 20 additional candidate genes providing insights into the genes and pathways involved in pathobiology of AMD.

“So far most studies in AMD have focused on analyses of genetic variants in DNA. This study for the first time leverages transcriptional (RNA) data to expand on the genetic architecture of AMD,” said Rinki Ratnapriya, Ph.D., who worked on the study as an NEI research fellow and is currently at Baylor College of Medicine in Houston.

Among the most plausible target genes were B3GLCT and BLOC1S1, which could affect AMD-related cell functions such as signaling; the breakdown and disposal of unwanted proteins; and the stability of the extracellular matrix, the cell’s infrastructure for distribution.

“Importantly, the ability to define how genetic variation affects gene expression opens up entirely new directions for looking at the biology of the eye,” Swaroop said.

Crucial to the study was Swaroop’s development of a database of retinal gene expression. Called EyeGEx the database provides a resource for vision researchers, not only for studies of AMD, but for research into the genetic causes of other diseases such as diabetic retinopathy and glaucoma.

AMD is a complex disease influenced by yet-to-be-understood mix of genetic and behavioral factors. Smoking, for example, increases the risk of developing the disease, while eating leafy greens and fish reduces it. More research is needed to understand how these environmental factors interact with genes to contribute to the development of the disease and its severity.

Future studies will aim to explain the function of the target AMD genes to determine how they relate to AMD pathobiology and to look for targets for new treatment strategies.

###

The study was a collaboration among researchers at NEI; University of Minnesota, Minneapolis; University of Michigan, Ann Arbor; and Johns Hopkins University, Baltimore. It was funded by the NEI Intramural Research Program, the Lindsay Family Foundation, an anonymous benefactor for AMD research, the Minnesota Lions Vision Foundation, and the Johns Hopkins Bloomberg Distinguished Professorship Endowment.

Reference:
Ratnapriya R, Sosina OA, Starostik MR, Kwicklis M, Kapphahn RJ, Fritsche LG, Walton A, Arvanitis M, Gieser L, Pietraszkiewicz A, Montezuma SR, Chew EY, Battle A, Abecasis GR, Ferrington DA, Chatterjee N, Swaroop A. Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nature Genetics. February 11, 2019. DOI 10.1038/s41588-019-0351-9

NEI leads the federal government’s research on the visual system and eye diseases. NEI supports basic and clinical science programs to develop sight-saving treatments and address special needs of people with vision loss. For more information, visit https://www.nei.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit https://www.nih.gov/.

NIH…Turning Discovery Into Health®

Media Contact
Kathryn DeMott
[email protected]
301-496-5248

Related Journal Article

http://dx.doi.org/10.1038/s41588-019-0351-9

Tags: AgingBiologyGenesGeneticsMedicine/HealthOphthalmology
Share12Tweet8Share2ShareShareShare2

Related Posts

SVTopo: Visualizing Complex Structural Variants

SVTopo: Visualizing Complex Structural Variants

October 9, 2025
Europe’s Largest Bats Hunt and Consume Migrating Birds Mid-Flight High Above the Ground

Europe’s Largest Bats Hunt and Consume Migrating Birds Mid-Flight High Above the Ground

October 9, 2025

Young Birds Acquire Vital Life Skills from Older Siblings and Flock Members, Study Finds

October 9, 2025

Innovative Biosensor Monitors Plant Immune Hormone Dynamics in Real Time

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1175 shares
    Share 469 Tweet 293
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Core Diversification with 1,2-Oxaborines: Versatile Platform

Exploring the Dose-Dependent Impact of Dissolved Biochar on C. elegans: Uncovering Physiological and Transcriptomic Changes

New Study Uncovers Genetic Connection to the Most Common Pediatric Bone Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.