• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NIH funding helps Ghose Lab invest in innovative imaging equipment

Bioengineer by Bioengineer
November 1, 2023
in Health
Reading Time: 2 mins read
0
Piya Ghose (in foreground) with members of her lab.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UTA will soon add a new piece of cutting-edge equipment to its already impressive and growing research armamentarium—a type of super-resolution microscope (SRM) that allows biologists to see structures within a cell in even finer detail.

Piya Ghose (in foreground) with members of her lab.

Credit: UT Arlington

UTA will soon add a new piece of cutting-edge equipment to its already impressive and growing research armamentarium—a type of super-resolution microscope (SRM) that allows biologists to see structures within a cell in even finer detail.

The SRM will come to UTA because of additional grant funding from the National Institutes of Health (NIH) to the lab of Piya Ghose, an assistant professor of biology at UTA. This nearly $250,000 award supplements Ghose’s existing NIH/National Institute of General Medical Sciences (NIGMS) Maximizing Investigators’ Research Award/Outstanding Investigator Award.

“We are really excited to bring this advanced imaging technology to our lab and UTA,” Ghose said. “We believe this will strongly position us to make important discoveries in the field of cell death and cell biology in general. My team and I are extremely excited to start imaging at this level.”

The Ghose lab studies the intricacies of programmed cell death—the genetically controlled end of life of most cells. This programmed cell death sculpts and refines tissues, ultimately removing cells the organism no longer needs or wants.

Researchers in Ghose’s lab are interested in how the general shape of a cell and the structures within it influence how the cell dies. Many cells have highly complicated structures, such as nerve cells that span long distances, with regions that are vastly different from each other. In addition to the surrounding environment of these regions being different, the internal architecture of each region of the cell is different.

The Ghose lab studies programmed cell death in a tiny embryonic cell of the roundworm C. elegans, which as a full-grown adult is 1 millimeter in length, about the size of the tip of a sharpened pencil or a sewing needle. This tiny cell is in the tail of the roundworm’s embryo and dies before the animal can hatch. Since it has a complicated structure like a nerve cell, it is ideal for studying cell death.

The Ghose lab is interested in the structures within the cell called organelles or “little organs,” such as mitochondria (which produce energy) and the endoplasmic reticulum (which help make proteins, among other functions). \ Since one of the lab’s important research goals is to better understand how these tiny organelles within a tiny cell of a tiny animal affect cell death, they believe employing the new SRM technology will allow them to pinpoint and document cell death in even finer detail.

“Having this state-of-the-art research equipment here on our campus is very exciting,” said Karen Juanez, a member of the Ghose lab who herself won a NIGMS award in 2022. “It pushes UTA further toward research excellence and continues to facilitate ground-breaking research. It feels awesome to be able to tackle and address interesting questions about cells and what goes on in them at a super zoomed-in scale.”



Share12Tweet8Share2ShareShareShare2

Related Posts

Gender Disparities Persist in Lung Transplants Despite Policy Reforms

October 22, 2025

Linking Screen Time, Sleep, Diet in Autistic Kids

October 22, 2025

Metabolomics, AI Reveal Biomarkers for Teen Social Anxiety

October 22, 2025

Male Nursing Students’ Journey in Obstetric Training

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1274 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    145 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Underwater Thermal Vents Could Be the Cradle of Life’s Earliest Molecular Precursors

Rainforest Animals Navigate Tourist Walkways: Insights for Conservation Design

New ‘Seating Chart’ for Atoms Unveils Their Positions in Materials

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.