• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NIH-funded research to investigate lower jaw development

Bioengineer by Bioengineer
March 16, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How the lower jaw — mandible — develops and consequently how and why some developmental birth defects occur is the focus of a five-year, $2.8 million grant to Joan Richtsmeier, distinguished professor of anthropology, Penn State, from the National Institutes of Health’s National Institute of Dental & Craniofacial Research.

looking at bone

Credit: Joan T. Richtsmeier, Penn State

How the lower jaw — mandible — develops and consequently how and why some developmental birth defects occur is the focus of a five-year, $2.8 million grant to Joan Richtsmeier, distinguished professor of anthropology, Penn State, from the National Institutes of Health’s National Institute of Dental & Craniofacial Research.

“Mandibular disorders, often resulting in small jaws, are among the most common human birth defects,” said Richtsmeier. “These disorders can dramatically affect quality of life and are often associated with or compound problems with airway obstruction, speech and feeding.”

As an embryo develops, a tubular cartilage rod called Meckel’s cartilage precedes development of the mandible. This cartilage rod is not only involved with development of the mandible, but also with bones in the middle ear and some ligaments.

Throughout the body, cartilage is often a precursor to bone both before and after birth. Cartilage mineralizes to form the long bones of the arms and legs as they grow, as well as certain bones that support the brain.

Meckel’s cartilage is assumed to be the template for the lower jaw, however, evidence of this is lacking and little is known of the relationship between the middle portion of Meckel’s cartilage and mandibular mineralization, size and shape, according to Richtsmeier. 

She suggests that Meckel’s cartilage does not function as a template for the mandible as previously assumed and that there is a novel role for the mid portion of the cartilage that her team hopes to reveal.

Richtsmeier and her team that includes Susan Motch Perrine and Kazuhiko Kawasakai, associate research professors, Penn State and a group of collaborators from the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, hypothesize that the mid portion of Meckel’s cartilage may function to determine mandibular length, mineralization of the perichondrium — a fibrous tissue covering cartilage — and mineralization of the mandible.

“Because our findings challenge the traditional role of Meckel’s cartilage, we have designed this project to validate the developmental events that take place as the midportion of Meckel’s cartilage disappears,” said Richtsmeier.

The researchers will examine four processes — initiation and growth of Meckel’s cartilage, mineralization of Meckel’s cartilage perichondrium, mineralization of the mandible and disappearance of Meckel’s cartilage. They will use 3D imaging of embryonic mice to determine the changing cellular dynamics of the lower jaw. They will also use RNA sequencing analysis and cell tracing analysis to determine the fate of cells from the intermediate region of Meckel’s cartilage, which is currently unknown.

“Our project is designed to bring new understanding to lower jaw development and open novel research areas to advance strategies for bone repair, regeneration and prevention in mandibular disease,” said Richtsmeier.



Share12Tweet7Share2ShareShareShare1

Related Posts

Weights for weight loss.

Weights can be weapons in battle against obesity

May 16, 2022
Race and lung disease diagnosis

Many Black men with “normal” lung function may actually have emphysema

May 15, 2022

Modifying the body’s immune system to help treat Type 1 diabetes

May 13, 2022

“Growing end” of inflammation discovered

May 13, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Urogenital SystemViolence/CriminalsUniversity of WashingtonVirologyVaccineWeaponryVirusZoology/Veterinary ScienceVehiclesWeather/StormsUrbanizationVaccines

Recent Posts

  • Striking new snake species discovered in Paraguay
  • Extraterrestrial stone brings first supernova clues to Earth
  • Lights, catalyst, reaction! Converting CO2 to formic acid using an alumina-supported, iron-based compound
  • Take herbal supplements with a dose of caution
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....