• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Newly proposed method offers fermentable sugars from sustainable lignocellulosic biomass

Bioengineer by Bioengineer
March 11, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: LIU Yajun


Fuel, animal feed, other major carbon-rich products could have a sustainable replacement with the help of a new approach to processing a plant biomass material produced naturally by plants during photosynthesis. Called lignocellulose, it comprises half of dry plant matter.

Researchers published a review of the work and current status on Feb. 24 in Biotechnology Advances.

“Lignocellulosic biomass is the most abundant sustainable carbon source on the planet and has enormous potential to substitute fossil resources on the premise of cost-effective conversion,” said LIU Yajun, paper author and researcher from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT). “Lignocellulosic residues, especially the agricultural lignocellulosic wastes, represent one of the best substitutes of fossil resources because of its low price, high availability and wide distribution.”

The estimated annual world output of lignocellulosic biomass is more than 200 billion tons, providing an extensive, renewable resource – if it can be converted into a useful form.

“Lignocellulosic biomass is recalcitrant and difficult to deconstruct,” LIU said.

The main component of lignocellulose is cellulose, the tough material responsible for the strong structure of plant cell walls. Lignocellulose bioconversion to biofuels and biochemicals is possible, but, according the LIU, the cost and efficiency of the enzymes used to initiate the conversion is a concern.

Previously proposed conversion methods involve separately producing enzymes, breaking down the lignocellulose, and then fermenting the resulting sugar or doing both simultaneously. The new method proposed by LIU and his team is called consolidated bio-saccharification, during which whole-cell biocatalysts are employed for lignocellulose deconstruction processing and the fermentation process is entirely separated.

Known as consolidated bio-saccharification, or CBS, this strategy aims for a final product of fermentable sugars, rather than end products such as biofuel. The produced sugars can then be used as the platform chemical in fermentation for later processes that produce biofuel or other biochemicals.

“CBS is considered promising to lead lignocellulose bioconversion into the real world because it shows tremendous advantages in reducing enzyme production costs and streamlining operational processes,” LIU said. “However, as a newly developed technology, CBS still needs improvement and innovation of existing processes and instruments to make breakthroughs in the real world.”

LIU and her team are currently piloting a demonstration of CBS, intending to provide further evidence of the method’s industrial applications and scalability.

###

Media Contact
CHENG Jing
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1016/j.biotechadv.2020.107535

Tags: BiologyBiotechnologyEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Amanita Mitochondrial Genomes and Phylogeny

October 2, 2025
Tracking Raccoon Domestication Through Citizen Science Images

Tracking Raccoon Domestication Through Citizen Science Images

October 2, 2025

New Study Identifies Surprising Marker in Kidney Disease

October 2, 2025

New Insights into Human Cilia Shed Light on Childhood Diseases

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unseen Weight of Solitude: The Impact of Social Withdrawal on the Adolescent Brain

Identifying Diabetic Ketoacidosis Risk Factors in Ethiopia

Multiform Yi Jin Jing for Knee Osteoarthritis: Trial Protocol

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.