• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 22, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Newly formed stars shoot out powerful whirlwinds

Bioengineer by Bioengineer
December 14, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Image: Per Bjerkeli/David Lamm/BOID)

Researchers from the Niels Bohr Institute have used the ALMA telescopes to observe the early stages in the formation of a new solar system. For the first time they have seen how a powerful whirlwind shoot out from the rotating disc of gas and dust surrounding the young star. The results have been published in the prestigious scientific journal, Nature.

A new solar system is formed in a large cloud of gas and dust that contracts and condenses due to the force of gravity and eventually becomes so compact that the centre collapses into a ball of gas where the pressure heats the material, resulting in a glowing globe of gas, a star. The remains of the gas and dust cloud rotate around the newly formed star in disc where the material starts to accumulate and form larger and larger clumps, which finally become planets.

In connection with the newly formed stars, called protostars, researchers have observed powerful emanations of whirlwinds and outflows, so-called jets. But before now, no one had observed how these winds are formed.

"Using the ALMA telescopes, we have observed a protostar at a very early stage. We see how the wind, like a tornado, lifts material and gas up from the rotary disc, which is in the process of forming a new solar system," explains Per Bjerkeli, a postdoc in Astrophysics and Planetary Science at the Niels Bohr Institute at the University of Copenhagen and Chalmers University of Technology in Sweden.

Slows things down

The ALMA Observatory (Atacama Large Millimeter/submillimetre Array) consists of 66 telescopes that observe with a resolution equivalent to a mirror with a diameter of up to16 km. The observed protostar is located 450 light years away. This is equivalent to 30 million times the distance between the Earth and the Sun. At this distance, the researchers have now observed details about protostars never seen before.

"During the contraction of the gas cloud, the material begins to rotate faster and faster just like a figure skater doing a pirouette spins faster by pulling their arms close to their body. In order slow down the rotation, the energy must be carried away. This happens when the new star emits wind. The wind is formed in the disc around the protostar and thus rotates together with it. When this rotating wind moves away from the protostar, it thus takes part of the rotational energy with it and the dust and gas close to the star can continue to contract," explains Per Bjerkeli.

Previously, we thought that the rotating wind originated from inside the centre of the rotating disc of gas and dust, but the new observations indicate otherwise.

"We can see that the rotating wind formed across the entire disc. Like a tornado, it lifts material up from the gas and dust cloud and at some point the wind releases its hold on the cloud, so that the material floats freely. This has the effect that the rotation speed of the cloud is slowed and thus the new star can hold together and in the process the material in the rotating gas and dust disc accumulates and forms planets," explains Jes Jørgensen, Associate Professor in Astrophysics and Planetary Science at the Niels Bohr Institute and the Centre for Star and Planet Formation at the University of Copenhagen. The next thing the researchers want to find out is whether the released material is completely blown away or whether it falls back onto the disc at some point and becomes part of the planet-forming system.

###

Movie: http://video.ku.dk/hvirvelvind-fra-protoplanetarisk-skive

Contact:

Per Bjerkeli, Postdoc in Astrophysics and Planetary Science at the Niels Bohr Institute at the University of Copenhagen and Chalmers University of Technology, +46 7034-13192, [email protected] Jes Jørgensen, Associate Professor in Astrophysics and Planetary Science at the Niels Bohr Institute and the Centre for Star and Planet Formation at the University of Copenhagen, +45 3532-4186, [email protected]

Media Contact

Gertie Skaarup
[email protected]
45-28-75-06-20

http://www.nbi.ku.dk/english/press_and_media/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....