• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Newly developed AI uses combination of ECG and X-ray results to diagnose arrhythmic disorders

Bioengineer by Bioengineer
April 22, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kobe University

Kobe University Hospital’s Dr. NISHIMORI Makoto and Project Assistant Professor KIUCHI Kunihiko et al. (of the Division of Cardiovascular Medicine, Department of Internal Medicine) have developed an AI that uses multiple kinds of test data to predict the location of surplus pathways in the heart called ‘accessory pathways’, which cause the heart to beat irregularly. In this study, the researchers were able to improve diagnosis accuracy by having the AI learn from two completely different types of test results- electrocardiography (ECG) data and X-ray images. It is hoped that this methodology can be applied to other disorders based upon the successful results of this research.

These research results were published online in ‘Scientific Reports‘ on April 13, 2021.

Research Background

Wolff-Parkinson-White (WPW) is an arrhythmic disorder. Patients with WPW syndrome are born with surplus pathways inside their hearts called ‘accessory pathways’, which can cause tachycardia episodes where the pulse speeds up. Catheter ablation involves using a catheter to selectively cauterize accessory pathways and can completely cure this disorder. However, the success rate of catheter ablation varies depending on the location of the accessory pathways. Conventionally, a 12-lead ECG (i.e. a regular electrocardiography) has been used to predict accessory pathway location prior to treatment. However, this current method that relies solely on ECG is insufficiently accurate, which makes it difficult to give patients a full explanation that includes the success rate of treatment. This research study tried using AI to solve this problem.

The researchers used a methodology for teaching AI called deep learning. Deep learning involves entering the data for each patient and the corresponding answers into a program. By repeating this learning process, the program automatically becomes smarter. Using this methodology, the research group was able to present a solution to a previously unresolved problem, thus further promoting the application of AI to modern medicine.

Research Methodology

Firstly, Dr. Nishimori’s team developed AI using only ECG data and compared its performance to previous methods. They conducted repeated learning where they gave the AI each patients’ ECG data and the accessory pathway location (i.e. the answer) in each case at the same time, successfully creating an AI with a higher accuracy rate than previous methods. However, the AI was unable to perform correct predictions every time from ECG data alone. The cause of this issue was thought to be that the ECG data is affected by the differences in size and position of each heart, therefore the ECG data did not match even when the location of the accessory pathway was the same. This problem was resolved by having the AI learn data, such as information on each heart’s size, from chest x-ray images at the same time (Figure 1). By simultaneously learning both the pre-treatment ECG and X-ray image data, the AI was able to obtain the missing information and its diagnostic accuracy was significantly improved (Figure 2) compared to when only ECG data was used.

Further Developments

The advancement of AI technology in recent years has made it possible for AI to make highly accurate diagnoses based on various kinds of test data in the field of medicine. However, there are cases where data from a single test is insufficient for AI to perform an accurate diagnosis. This research study successfully increased the accuracy by having the AI learn not only from ECG results but also from chest X-ray images, which are a completely different type of data. AI-mediated accurate diagnoses will enable doctors to give pre-treatment patients a more accurate explanation of their condition, which will hopefully put patients at ease. In addition, this research could be applied to various other disorders and will hopefully lead to the implementation of AI diagnosis software.

###

Journal Information:

Title:
“Accessory pathway analysis using a multimodal deep learning model”

DOI: 10.1038/s41598-021-87631-y

Authors:
Makoto Nishimori, Kunihiko Kiuchi, Kunihiro Nishimura, Kengo Kusano, Akihiro Yoshida, Kazumasa Adachi, Yasutaka Hirayama, Yuichiro Miyazaki, Ryudo Fujiwara, Philipp Sommer, Mustapha El Hamriti, Hiroshi Imada, Makoto Takemoto, Mitsuru Takami, Masakazu Shinohara, Ryuji Toh, Koji Fukuzawa, Ken-ichi Hirata

Journal:
Scientific Reports

Media Contact
Verity Townsend
[email protected]

Original Source

https://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2021_04_21_01.html

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-87631-y

Tags: CardiologyMedicine/HealthRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

August 1, 2025
Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

What “And” vs. “Then” Reveal About Hospital Visits: Insights from Online Reviews

August 1, 2025

Newborn Brain Development: Plateau vs. Plain Insights

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary AI Tool Requires Minimal Data to Analyze Medical Images

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

What “And” vs. “Then” Reveal About Hospital Visits: Insights from Online Reviews

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.