• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New way to detect Palmer amaranth in contaminated seedlots

Bioengineer by Bioengineer
June 6, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lauren D. Quinn

URBANA, Ill. – Last summer, farmers in the Midwest got an unwelcome surprise after planting native seed on Conservation Reserve Program acres. Palmer amaranth, the aggressive and hard-to-kill weed, had established in droves. As a possible solution, some states declared Palmer a noxious weed, which prohibits its sale and transport.

"I've had seed growers call me," says Pat Tranel, molecular weed scientist in the crop sciences department at the University of Illinois. "Their businesses are up in the air because of this. Unless they have a way to certify their product is Palmer-free, they can't sell it."

The typical testing method involves growing a sample of seeds until the plants are large enough to be identified, but this is a slow and potentially unreliable process.

"It all takes a long time, and sometimes the seeds don't germinate during the test," Tranel says. "Alternatively, there's a company that will test individual seeds using DNA sequencing, but they're charging $100 per seed. It's not cost-effective."

Tranel and graduate student Brent Murphy developed a way around these issues. Their low-cost method can identify Palmer amaranth DNA from within a mixed sample without having to grow the plants. The assay, which uses a method known as quantitative PCR, can detect genetic variations unique to Palmer even when flooded with samples from closely related species, including waterhemp.

"Palmer, redroot pigweed, waterhemp – they all have tiny black seeds that basically look the same. We needed a way to efficiently extract DNA from pooled seed samples and, if it's present, identify Palmer," Tranel says.

Once Tranel and Murphy developed this assay, they worked with U of I Extension's Plant Clinic to optimize the test for mixed seed samples. Diagnostic outreach Extension specialist Diane Plewa and Plant Clinic technician Elizabeth Phillippi began trying different methods to extract DNA from seed. The assay is very sensitive, but if DNA is not correctly extracted from a lone Palmer amaranth seed in a mixed sample, it won't be detected.

"The trick," Plewa says, "is to make sure every seed is ground up during the extraction process."

The researchers were able to consistently detect a single Palmer amaranth seed when mixed with 99 waterhemp seeds, and they believe the assay could achieve even greater sensitivity with additional refinement.

The Plant Clinic has optimized a protocol for commercial testing of seed lots. "We have a test that we feel very confident in," Plewa says. "We are offering the service now, for $50 per sample." For more information, call 217-649-3941 or visit the Plant Clinic website.

###

The article, "A quantitative assay for Amaranthus palmeri identification," is published in Pest Management Science. Authors Brent Murphy and Pat Tranel are housed in the Department of Crop Sciences at U of I, and Diane Plewa, Elizabeth Phillippi, and Suzanne Bissonnette are from U of I Extension's Plant Clinic. The work was supported by a USDA National Institute of Food and Agriculture Hatch grant.

Media Contact

Lauren Quinn
[email protected]
217-300-2435
@ACESIllinois

http://aces.illinois.edu/

Related Journal Article

http://dx.doi.org/10.1002/ps.4632

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

August 10, 2025
blank

Surfactants and Oils Shape Emulsion Ripening Rates

August 10, 2025

Mulberry Vinegar Fights Cognitive Decline via NF-κB

August 9, 2025

Scientists Discover Novel Mechanism Behind Cellular Tolerance to Anticancer Drugs

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.