• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New USask research contributes to understanding of Cystic Fibrosis

Bioengineer by Bioengineer
October 6, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SASKATOON – Researchers at the University of Saskatchewan (USask) are hopeful new understanding of cellular defects related to Cystic Fibrosis (CF) could help pave the way for treatment of the disease.

USask researchers (left to right) Drs. Juan Ianowski, Xiaojie (Jay) Luan and Julian Tam

Credit: Canadian Light Source

SASKATOON – Researchers at the University of Saskatchewan (USask) are hopeful new understanding of cellular defects related to Cystic Fibrosis (CF) could help pave the way for treatment of the disease.

A team in the College of Medicine led by Drs. Juan Ianowski (PhD) and Julian Tam (MD) found that sodium transport is abnormal in lungs with CF. The researchers, affiliated with the Respiratory Research Centre, studied the swine model of CF and used a specialized microelectrode technique that allowed them to perform experiments with very high resolution. They discovered there is excessive sodium absorption in the small airways, a previously unstudied site in the body.

“A precise understanding of the cellular basis of CF lung disease is a prerequisite for the development of treatments such as gene therapy that have the potential to cure CF,” said Tam. “CFTR modulators, such as Trikafta, can improve life for about 90 per cent of patients. Our work is especially relevant to that 10 per cent of people with CF who cannot benefit from these medications.”

Their findings were published in the highly regarded journal Cell Reports on Oct. 5.

According to Cystic Fibrosis Canada, CF is the most common fatal genetic disease affecting Canadian children and young adults. There is presently no cure for the disorder that varies in symptoms from patient to patient, but mainly affects the lungs and digestive system. About one in every 3,600 children born in Canada has CF, which occurs when a person receives two copies of a defective gene — one from each parent.

Ianowski has been working with Tam for about six years, and has been able to meet people with CF in his clinic. He said this adds a sense of purpose and desire to create applicable outcomes through the research he performs in the lab.

“In this context I get to know the patients by name and see their struggles,” Ianowski said. “Working with Julian has created a meaningful partnership and we can inform and strengthen each other’s work.”

Tam and Ianowski point to the power of USask’s rich research environment, which gave them access to the expertise of veterinarians that supported their work. They also are grateful for the vital contributions of team members like post-doctorate fellow Dr. Xianojie Luan (PhD), who played a crucial role in developing the research protocols and collecting data.

The research was funded by the Canadian Institute for Health Research and Cystic Fibrosis Canada.

 -30-



Journal

Cell Reports

DOI

10.1016/j.celrep.2021.109795

Method of Research

Experimental study

Subject of Research

Animal tissue samples

Article Title

cAMP triggers Na+ absorption by distal airway surface epithelium in cystic fibrosis swine

Article Publication Date

5-Oct-2021

COI Statement

The authors declare no competing interests.

Share12Tweet7Share2ShareShareShare1

Related Posts

Illustration of Meraxes

A new giant dinosaur gives insight into why many prehistoric meat-eaters had such tiny arms

July 7, 2022
A mouse blastoid fluorescently stained for various cellular components

The beginning of life: The early embryo is in the driver’s seat

July 7, 2022

USC Stem Cell scientists use mini-kidney models to identify potential drugs for polycystic kidney disease

July 7, 2022

New giant carnivorous dinosaur discovered with tiny arms like T. Rex

July 7, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceVirologyWeaponryUniversity of WashingtonVehiclesUrogenital SystemVirusWeather/StormsUrbanizationVaccinesVaccineViolence/Criminals

Recent Posts

  • Nanoparticle ‘backpacks’ restore damaged stem cells
  • A new giant dinosaur gives insight into why many prehistoric meat-eaters had such tiny arms
  • Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire 
  • The beginning of life: The early embryo is in the driver’s seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....