• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New USask research contributes to understanding of Cystic Fibrosis

Bioengineer by Bioengineer
October 6, 2021
in Biology
Reading Time: 3 mins read
0
USask researchers (left to right) Drs. Juan Ianowski, Xiaojie (Jay) Luan and Julian Tam
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SASKATOON – Researchers at the University of Saskatchewan (USask) are hopeful new understanding of cellular defects related to Cystic Fibrosis (CF) could help pave the way for treatment of the disease.

USask researchers (left to right) Drs. Juan Ianowski, Xiaojie (Jay) Luan and Julian Tam

Credit: Canadian Light Source

SASKATOON – Researchers at the University of Saskatchewan (USask) are hopeful new understanding of cellular defects related to Cystic Fibrosis (CF) could help pave the way for treatment of the disease.

A team in the College of Medicine led by Drs. Juan Ianowski (PhD) and Julian Tam (MD) found that sodium transport is abnormal in lungs with CF. The researchers, affiliated with the Respiratory Research Centre, studied the swine model of CF and used a specialized microelectrode technique that allowed them to perform experiments with very high resolution. They discovered there is excessive sodium absorption in the small airways, a previously unstudied site in the body.

“A precise understanding of the cellular basis of CF lung disease is a prerequisite for the development of treatments such as gene therapy that have the potential to cure CF,” said Tam. “CFTR modulators, such as Trikafta, can improve life for about 90 per cent of patients. Our work is especially relevant to that 10 per cent of people with CF who cannot benefit from these medications.”

Their findings were published in the highly regarded journal Cell Reports on Oct. 5.

According to Cystic Fibrosis Canada, CF is the most common fatal genetic disease affecting Canadian children and young adults. There is presently no cure for the disorder that varies in symptoms from patient to patient, but mainly affects the lungs and digestive system. About one in every 3,600 children born in Canada has CF, which occurs when a person receives two copies of a defective gene — one from each parent.

Ianowski has been working with Tam for about six years, and has been able to meet people with CF in his clinic. He said this adds a sense of purpose and desire to create applicable outcomes through the research he performs in the lab.

“In this context I get to know the patients by name and see their struggles,” Ianowski said. “Working with Julian has created a meaningful partnership and we can inform and strengthen each other’s work.”

Tam and Ianowski point to the power of USask’s rich research environment, which gave them access to the expertise of veterinarians that supported their work. They also are grateful for the vital contributions of team members like post-doctorate fellow Dr. Xianojie Luan (PhD), who played a crucial role in developing the research protocols and collecting data.

The research was funded by the Canadian Institute for Health Research and Cystic Fibrosis Canada.

 -30-



Journal

Cell Reports

DOI

10.1016/j.celrep.2021.109795

Method of Research

Experimental study

Subject of Research

Animal tissue samples

Article Title

cAMP triggers Na+ absorption by distal airway surface epithelium in cystic fibrosis swine

Article Publication Date

5-Oct-2021

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Sumac, Linalool, Eugenol Fight Cutaneous Leishmaniasis

Sumac, Linalool, Eugenol Fight Cutaneous Leishmaniasis

December 16, 2025
Unraveling Genetic Diversity in Pseudobagrus ussuriensis

Unraveling Genetic Diversity in Pseudobagrus ussuriensis

December 16, 2025

First Molecular Detection of Dientamoeba fragilis in Dairy

December 16, 2025

Barley DREB Genes: Key Players in Stress Responses

December 16, 2025

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reduced Wnt5ahi Fibroblasts Drive Myopia in Mice

Exploring EIN3/EIL Gene Profiles in Rice Japonica

Irrigation Strategies Cut CO2 Emissions in Grains

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.