• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, March 7, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New test method to standardize immunological evaluation of nucleic acid nanoparticles

Bioengineer by Bioengineer
October 23, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers believe accurate, affordable and easily reproduced protocol for assessing immune effects could further research collaboration and advance therapeutic use of new medicines

IMAGE

Credit: Melina Richardson (Afonin Lab, UNC Charlotte)

Therapeutic nucleic acids – lab-created segments of DNA or RNA, designed be used to block or modify genes, control gene expression or regulate other cellular processes – are a promising but still emerging area of biomedical treatment, with several drugs already in use and many more in trials. Nucleic acid nanoparticles (NANPs) are programmable assemblies made exclusively of nucleic acids with a number of therapeutic nucleic acid sequences embedded in their structure in a specific configuration, designed for the packaging and delivery of a number of intercellular or extracellular treatments simultaneously, to cause multiple, therapeutic actions human cells.

Perhaps predictably for a new class of drugs, this promising new form of treatment has often run into difficulties in clinical testing. Recurring problems have kept many products under development from being approved for use, and have had a discouraging effect on continuing research. The foremost of these difficulties have been adverse immune reactions in response to the delivery of NANP-based formulations.

In a paper in Nature Protocols, nanotechnology researchers Marina Dobrovolskaia from the Frederick National Laboratory for Cancer Research, and Kirill Afonin from the University of North Carolina at Charlotte, describe the development of a reproduceable protocol that accurately assesses the qualitative and quantitative immune properties of different NANPs when used to deliver therapeutic nucleic acids.

“Ten to twenty percent of all drugs are withdrawn during clinical trials due to immunotoxicity – nucleic acid therapies are not an exception,” said Afonin, whose research, among other things, focuses on NANP development and understanding immune responses to NANP’s. “This is especially true for NANPs because therapeutic use of nucleic acids is a relatively young area.”

“There are lots of unknown immune characteristics of NANP’s that can preclude them from entering clinical trials. This inhibits research in the field, because researchers know that after billions of dollars in testing expense you may still have a drug fail because of an adverse immune reaction in trials,” he noted. “So, this is the key: how can we predict carefully the immune stimulation of a drug before we put it in a patient?”

The protocol proposed in the paper is a detailed step-by-step process for assessing inflammatory properties of any given NANP design when administered to humans, using human peripheral blood mononuclear cells (“white blood cells”) as a test model. The in vitro experiments performed in the paper used cells freshly drawn and isolated from the blood of over 100 healthy human donors, though the paper notes that as few as three donors could be adequate to account for individual genetic diversity in immune cells.

“Aiming for a broad sample in our studies, we used more than 100 donors and the blood was drawn over different periods of the year, so it was a very heterogeneous pool of blood cells,” Afonin noted.

“This protocol is reproduceable and it uses the most accurate model,” he said. “It’s more predictive of cytokine storms than animal models, which is, frankly, amazing. This also makes it affordable for more researchers, because they don’t have to work with animals.”

A reliable and accurate standardized protocol for assessing human immune response to different particle designs can be of great value in supporting research in NANPs, the paper argues: “In order to further advance the translation of NANPs from bench to clinic, the field is in great need of reliable experimental protocols for the assessment of both safety and efficacy of these novel nanomaterials.”

“This is important because there are hundreds of researchers working on NANPs and everyone has their own preferred formulation,” Afonin said. “The problem is that they all also use different protocols. When you read their publications, it is difficult to say which formulation is better because the conditions that they have tested them under are completely different – there is no harmony.”

While a toxic immunological response might preclude a specific NANP design from entering clinical trials, the paper notes that in some therapies, some of the specific immune responses caused by some NANPs may, in fact, be useful and desired.

The protocol measures both the quantitative nature of the cell’s immune reaction – the scale of the immune response – and the qualitative nature of it – what exact kind of chemical response(s) the immune reaction causes.

“The ‘quality’ being measured here is what kind of interferons or cytokines will be produced in reaction to the specific NANP,” he said. “Both quality and quantity are crucial questions. And sometimes the immune response is not bad or undesired – by using this protocol, we can assess the quality and quantity of the immune response of a specific NANP so it can be used – as a vaccine adjuvant, for example.”

Afonin is confident that the protocol produces highly accurate results because of the extensive experimentation that went into its design.

“The steps of this protocol have been thought through and validated for more than 60 different NANP designs, generated both by my lab and by other people in the field – a very representative sample,” Afonin emphasized. “Our goal is to harmonize testing and make something that will be a milestone for future research.”

###

Research reported in the article was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM120487 (to K.A.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The study was also supported in part (to M.A.D.) by federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E and 75N91019D00024. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Media Contact
Lynn Roberson
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesGenesNanotechnology/MicromachinesPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

“Magic sand” might help us understand the physics of granular matter

March 6, 2021
IMAGE

Study reveals how egg cells get so big

March 5, 2021

Survey identifies factors in reducing clinical research coordinator turnover

March 5, 2021

New ‘split-drive’ system puts scientists in the (gene) driver seat

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In