• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New test identifies poisonous mushrooms

Bioengineer by Bioengineer
February 19, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Candace Bever, ARS-USDA


ALBANY, CALIFORNIA, February 19, 2020–A simple, portable test that can detect the deadliest of the mushroom poisons in minutes has been developed by Agricultural Research Service (ARS) scientists and their colleagues.

Eating toxic mushrooms causes more than 100 deaths a year, globally, and leaves thousands of people in need of urgent medical assistance. Amanitin is the class of mushroom toxins that cause the most serious issues.

The new test can identify the presence of as little as 10 parts per billion (equivalent to 10 cents out of $10 million) of amanitin in about 10 minutes from a rice grain size sample of a mushroom or in the urine of someone who has eaten a poisonous amanitin-containing mushroom. The test also works with dog urine, as dogs are known to indiscriminately eat mushrooms.

“We developed the test primarily for mushrooms as food products. Serendipitously, it was sensitive enough to also detect the toxin in urine,” said ARS microbiologist Candace Bever, who worked on the development. Bever is with the Foodborne Toxin Detection and Prevention Research Unit in Albany, California.

No definitive point-of-care clinical diagnostic test currently exists for amatoxin poisoning. Early detection of amanitin in a patient’s urine would help doctors trying to make a diagnosis.

“Our hope is that doctors and veterinarians will be able to quickly and confidently identify amatoxin poisoning rather than having to clinically eliminate other suspected gastrointestinal diseases first,” she added. “We also hope that will give patients a better chance at recovery, even though there are no clearly effective, specific treatments right now.”

The test also could be a practical and definitive way for mushroom foragers to identify and avoid eating mushrooms with amanitin toxin if a commercial partner can be found to produce and market a test kit. This test is the most sensitive and reliable field method available to chemically identify amanitin-containing mushrooms. Although mushroom experts can identify deadly mushrooms just by looking at their appearance, experts cannot see the toxin chemicals that lurk inside.

Still this test only identifies the presence or absence of this specific class of toxin; it does not detect other compounds such as hallucinogens or toxins that cause other gastrointestinal or neurological symptoms. So, it cannot determine if a mushroom is edible.

Mushroom hunting has gained in popularity in the last several decades. A single mushroom identification group on Facebook, among many, has more than 166,000 members. Foraging for mushrooms is popular throughout most of Europe, Australia, Japan, Korea, parts of the Middle East, and the Indian subcontinent, as well as in Canada and the United States. Distinguishing toxic from nontoxic mushroom species is based on first correctly identifying the mushroom and then referencing a mushroom field guide to determine if it is known to contain toxins or not. But mushrooms of the same species can vary in appearance, especially at different life stages and habitats, making them very difficult to identify.

Many poisonous mushrooms closely resemble edible wild mushrooms. For instance, the Springtime Amanita (Amanita velosa) is a highly desirable edible wild mushroom in the Pacific coastal United States. But to the untrained eye, it can appear similar to the Death cap mushroom A. phalloides. The Death Cap accounts for more than 90 percent of fungus-related poisoning deaths in Europe.

“This test can provide more information about a wild mushroom beyond physical appearance and characteristics, and detect something we cannot even see–the presence of amanitins,” said Bever. If an affordable product like this was available, foraging could become even more popular and possibly safer.

The new test is an immuno-assay and depends on a very specifically reactive monoclonal antibody–a lab-produced protein that detects and binds only with a specific target. Scientists from the University of California-Davis, Pet Emergency and Specialty Center of Marin and Centers for Disease Control and Prevention also contributed to this project.

###

This research was published in the journal Toxins. https://www.mdpi.com/2072-6651/12/2/123

The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $20 of economic impact

Media Contact
Kim Kaplan
[email protected]
301-504-1637

Original Source

https://www.ars.usda.gov/news-events/news/research-news/2020/new-test-identifies-poisonous-mushrooms/

Tags: AgricultureBiochemistryEcology/EnvironmentEnvironmental HealthFood/Food ScienceHealth CareMedicine/HealthMolecular BiologyNatureToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

How Black Holes Generate Intense Relativistic Jets

How Black Holes Generate Intense Relativistic Jets

October 6, 2025
From Engines to Nanochips: Scientists Unveil New Understanding of Heat Transfer

From Engines to Nanochips: Scientists Unveil New Understanding of Heat Transfer

October 6, 2025

Development and Utilization of a Halogen-Bonded Organic Framework Featuring N⋯Cl⁺⋯N Interactions

October 6, 2025

Iminium Ion Triplet Reactivity Powers Asymmetric Photocycloadditions

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Care Model for Aboriginal Children in Fitzroy Valley

How Black Holes Generate Intense Relativistic Jets

Texas Children’s Researchers Develop Innovative Tool to Enhance Precision in Genetic Testing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.