• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New test identifies poisonous mushrooms

Bioengineer by Bioengineer
February 19, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Candace Bever, ARS-USDA


ALBANY, CALIFORNIA, February 19, 2020–A simple, portable test that can detect the deadliest of the mushroom poisons in minutes has been developed by Agricultural Research Service (ARS) scientists and their colleagues.

Eating toxic mushrooms causes more than 100 deaths a year, globally, and leaves thousands of people in need of urgent medical assistance. Amanitin is the class of mushroom toxins that cause the most serious issues.

The new test can identify the presence of as little as 10 parts per billion (equivalent to 10 cents out of $10 million) of amanitin in about 10 minutes from a rice grain size sample of a mushroom or in the urine of someone who has eaten a poisonous amanitin-containing mushroom. The test also works with dog urine, as dogs are known to indiscriminately eat mushrooms.

“We developed the test primarily for mushrooms as food products. Serendipitously, it was sensitive enough to also detect the toxin in urine,” said ARS microbiologist Candace Bever, who worked on the development. Bever is with the Foodborne Toxin Detection and Prevention Research Unit in Albany, California.

No definitive point-of-care clinical diagnostic test currently exists for amatoxin poisoning. Early detection of amanitin in a patient’s urine would help doctors trying to make a diagnosis.

“Our hope is that doctors and veterinarians will be able to quickly and confidently identify amatoxin poisoning rather than having to clinically eliminate other suspected gastrointestinal diseases first,” she added. “We also hope that will give patients a better chance at recovery, even though there are no clearly effective, specific treatments right now.”

The test also could be a practical and definitive way for mushroom foragers to identify and avoid eating mushrooms with amanitin toxin if a commercial partner can be found to produce and market a test kit. This test is the most sensitive and reliable field method available to chemically identify amanitin-containing mushrooms. Although mushroom experts can identify deadly mushrooms just by looking at their appearance, experts cannot see the toxin chemicals that lurk inside.

Still this test only identifies the presence or absence of this specific class of toxin; it does not detect other compounds such as hallucinogens or toxins that cause other gastrointestinal or neurological symptoms. So, it cannot determine if a mushroom is edible.

Mushroom hunting has gained in popularity in the last several decades. A single mushroom identification group on Facebook, among many, has more than 166,000 members. Foraging for mushrooms is popular throughout most of Europe, Australia, Japan, Korea, parts of the Middle East, and the Indian subcontinent, as well as in Canada and the United States. Distinguishing toxic from nontoxic mushroom species is based on first correctly identifying the mushroom and then referencing a mushroom field guide to determine if it is known to contain toxins or not. But mushrooms of the same species can vary in appearance, especially at different life stages and habitats, making them very difficult to identify.

Many poisonous mushrooms closely resemble edible wild mushrooms. For instance, the Springtime Amanita (Amanita velosa) is a highly desirable edible wild mushroom in the Pacific coastal United States. But to the untrained eye, it can appear similar to the Death cap mushroom A. phalloides. The Death Cap accounts for more than 90 percent of fungus-related poisoning deaths in Europe.

“This test can provide more information about a wild mushroom beyond physical appearance and characteristics, and detect something we cannot even see–the presence of amanitins,” said Bever. If an affordable product like this was available, foraging could become even more popular and possibly safer.

The new test is an immuno-assay and depends on a very specifically reactive monoclonal antibody–a lab-produced protein that detects and binds only with a specific target. Scientists from the University of California-Davis, Pet Emergency and Specialty Center of Marin and Centers for Disease Control and Prevention also contributed to this project.

###

This research was published in the journal Toxins. https://www.mdpi.com/2072-6651/12/2/123

The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $20 of economic impact

Media Contact
Kim Kaplan
[email protected]
301-504-1637

Original Source

https://www.ars.usda.gov/news-events/news/research-news/2020/new-test-identifies-poisonous-mushrooms/

Tags: AgricultureBiochemistryEcology/EnvironmentEnvironmental HealthFood/Food ScienceHealth CareMedicine/HealthMolecular BiologyNatureToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hope for Sahara Killifish’s Rediscovery in Algeria!

Dopamine D2 Receptors and Heart Cell Death Unveiled

Evaluating Rapid Start HIV Treatment Benefits in U.S.

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.