• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New technique reduces pathogen identification time from two weeks to less than one hour

Bioengineer by Bioengineer
February 12, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Karolina Pusz-Bochenska, Edel Perez-Lopez, Tim J. Dumonceaux, Chrystel Olivier, and Tyler J. Wist


St. Paul, MN (February 2020)–Transmitted by insects, especially the aster leafhopper, aster yellows (AY) outbreaks can cause severe production losses in many crops, including carrots, lettuce, and canola. Canola is a billion-dollar crop for Canada but the growing season in Western Canada is very short. Depending on the environmental conditions and number of infected leafhoppers, AY can be transmitted to canola in less than 24 hours and the leafhoppers can continue spreading the disease for the rest of their lives.

Scientists based in Saskatoon, Canada, developed a rapid, simple laboratory and field-adaptable DNA extraction method that allowed them to identify both plant pathogen and insect vector using molecular barcoding and gene sequencing. This method reduced the time from collection of insects to a positive identification of the presence of a pathogen from up to two weeks to less than one hour. They published their findings in Plant Health Progress.

“Using this methodology, we were able to go from DNA extraction to pathogen detection in less than one hour,” according to lead author Karolina Pusz-Bochenska. “This rapid technique allows for same-day management decisions essential to preventing the spread of insect-transmitted pathogens.”

To achieve this quick turnaround, Pusz-Bochenska and colleagues used DNA lysis paper to extract pathogen DNA, which was a novel choice that they combined with the rapid-detection potential of the sensitive and field-adaptable loop-mediated isothermal amplification (LAMP) assay. According to Pusz-Bochenska, this combination was groundbreaking.

“When the aster leafhoppers migrate into Canada in spring, they bring AY phytoplasmas that can cause devastating damage to canola crops, and we need a rapid-test to determine if these migrant leafhoppers are a threat or not. A rapid analysis of the leafhoppers allows us to estimate the infectivity of the population and forecast the risk to the crops, allowing the growers to make management decisions if the leafhoppers have arrived in their fields.”

While this research focuses on agriculture, this techniques has potential applications to horticulture as well as animal and human health. For more details, read “A Rapid, Simple, Laboratory and Field-Adaptable DNA Extraction and Diagnostic Method Suitable for Insect-Transmitted Plant Pathogen and Insect Identification,” which is freely available through the end of March.

###

Media Contact
Ashley Bergman Carlin
[email protected]
651-994-3832

Related Journal Article

http://dx.doi.org/10.1094/PHP-09-19-0063-FI

Tags: Agricultural Production/EconomicsAgricultureBiotechnologyEcology/EnvironmentFertilizers/Pest ManagementFood/Food ScienceMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Stable Sodium-Ion Battery Cathode: K-rich Copper Hexacyanoferrate

October 2, 2025
Revolutionizing Lithium-Ion Battery Lifespan Predictions with AI

Revolutionizing Lithium-Ion Battery Lifespan Predictions with AI

October 2, 2025

Alleviating ECT Anxiety Through Progressive Muscle Relaxation

October 2, 2025

Diabetic Patients in Upper Egypt: Adherence and Perception Insights

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stable Sodium-Ion Battery Cathode: K-rich Copper Hexacyanoferrate

Revolutionizing Lithium-Ion Battery Lifespan Predictions with AI

Alleviating ECT Anxiety Through Progressive Muscle Relaxation

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.