• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 9, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New technique enables 3-D printing with paste of silicone particles in water

Bioengineer by Bioengineer
June 7, 2017
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Orlin Velev, NC State University

Using the principles behind the formation of sandcastles from wet sand, North Carolina State University researchers have achieved 3-D printing of flexible and porous silicone rubber structures through a new technique that combines water with solid and liquid forms of silicone into a pasty ink that can be fed through a 3-D printer. The finding could have biomedical applications and uses in soft robotics.

In a paper published this week in Advanced Materials, corresponding author Orlin Velev and colleagues show that, in a water medium, liquid silicone rubber can be used to form bridges between tiny silicone rubber beads to link them together — much as a small amount of water can shape sand particles into sandcastles.

Interestingly, the technique can be used in a dry or a wet environment, suggesting that it has the potential to be used in live tissue – think of an ultraflexible mesh encapsulating a healing droplet, or a soft bandage that can be applied or even directly printed on some portion of the human body, for example.

"There is great interest in 3-D printing of silicone rubber, or PDMS, which has a number of useful properties," said Velev, INVISTA Professor of Chemical and Biomolecular Engineering at NC State. "The challenge is that you generally need to rapidly heat the material or use special chemistry to cure it, which can be technically complex.

"Our method uses an extremely simple extrudable material that can be placed in a 3-D printer to directly prototype porous, flexible structures – even under water," Velev added. "And it is all accomplished with a multiphasic system of just two materials – no special chemistry or expensive machinery is necessary. The 'trick' is that both the beads and the liquid that binds them are silicone, and thus make a very cohesive, stretchable and bendable material after shaping and curing."

###

The paper is co-authored by first author Sangchul Roh, an NC State Ph.D. candidate; NC State graduate student Dishit Parekh; Bhuvnesh Bharti, a faculty member at Louisiana State University; and Dr. Simeon Stoyanov of Wageningen University in The Netherlands.

The research is funded by the National Science Foundation under grant CBET-1604116 and by the Research Triangle Materials Research Science and Engineering Center on Programmable Soft Matter under grant DMR-1121107. NC State has filed a provisional patent on the new technique.

Note to editors: An abstract of the paper follows.

"Three-dimensional printing by multiphase silicone/water capillary inks" Authors: Sangchul Roh, Dishit Parekh and Orlin D. Velev, North Carolina State University; Bhuvnesh Bharti, Louisiana State University; Simeon Stoyanov, Wageningen University

Published: June 7, 2017, online in Advanced Materials

DOI: 10.1002/adma.201701554

Abstract: Three-dimensional (3D) printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). We demonstrate a new efficient technique for 3D-printing with PDMS by using a capillary suspension ink containing PDMS in the form of both pre-cured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. The resulting capillary ink could be 3D printed and cured both in air and under water. These PDMS structures are remarkably elastic and flexible, and could find a broad range of applications in soft materials and biomedical microarchitectures.

Media Contact

Orlin Velev
[email protected]
919-513-4318
@NCStateNews

http://www.ncsu.edu

Original Source

https://news.ncsu.edu/2017/06/new-technique-enables-3-d-printing-with-paste-of-silicone-particles-in-water/ http://dx.doi.org/10.1002/adma.201701554

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Aldosterone linked to increased risk of chronic kidney disease progression and end-stage kidney disease

Aldosterone linked to increased risk of chronic kidney disease progression and end-stage kidney disease

August 9, 2022
AI and quantum mechanics combine to simulate water freezing

In simulation of how water freezes, artificial intelligence breaks the ice

August 8, 2022

WVU and citizen scientists go fishing for answers on blotchy bass syndrome

August 8, 2022

UTSA chemistry researcher to study production of vitamin B2

August 8, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationVirologyWeaponryWeather/StormsVirusUniversity of WashingtonViolence/CriminalsVaccinesZoology/Veterinary ScienceVehiclesUrogenital SystemVaccine

Recent Posts

  • Aldosterone linked to increased risk of chronic kidney disease progression and end-stage kidney disease
  • AI pilot can navigate crowded airspace
  • Artificial intelligence tools predict DNA’s regulatory role and 3D structure
  • In simulation of how water freezes, artificial intelligence breaks the ice
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In