• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New targets in the fight against pancreatic cancer

Bioengineer by Bioengineer
December 15, 2022
in Biology
Reading Time: 3 mins read
0
Image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tokyo Medical and Dental University (TMDU) uncover an important relationship between two genes critical to pancreatic cancer patient prognosis

Image

Credit: Department of Molecular Oncology, TMDU

Researchers from Tokyo Medical and Dental University (TMDU) uncover an important relationship between two genes critical to pancreatic cancer patient prognosis

Tokyo, Japan – Pancreatic cancer remains one of the deadliest malignancies worldwide. Since five-year survival rate for pancreatic ductal adenocarcinoma (PDAC) is only about 3% in patients, PDAC is very difficult to treat with surgery worldwide. To develop novel treatment methods, the biology of PDAC at the molecular level needs to be better understood. 

In a recent article published in Cancer Science, researchers from Tokyo Medical and Dental University (TMDU) have identified a new target gene that has strong clinical implications in PDAC cases. 

Previous studies have demonstrated that cancer cells express high levels of a special enzyme—histone H3K4 methyltransferase—that is encoded by SETD1A gene. This enzyme regulates gene expression by adding a methyl chemical group to histone proteins (essential structural components of chromatin) of specific target genes through a process called methylation. However, the mechanism causing overexpression of this enzyme and its effect on cancer cells remain unclear. Following histone methylation, the target genes become active. This is especially significant if SETD1A target genes can support cancer development and progression. Therefore, researchers from TMDU became interested in understanding the role of SETD1A overexpression in PDAC.

“Although previous work has shown that SETD1A is overexpressed in various cancer, such as gastric and lung cancer, the specific molecular events of SETD1A are not understood in PDAC,” says lead author Takeshi Ishii.  “SETD1A target genes in PDAC have also not yet been identified.”

The researchers observed high levels of SETD1A expression in 51.4% of the human PDAC samples they analyzed. They also determined that SETD1A was an independent prognostic factor for disease-free survival, meaning that after tumor resection, patients with high SETD1A levels live in a disease-free state for a shorter duration than those with low SETD1A levels. These results demonstrate the clinical importance of SETD1A expression in PDAC. 

Then, they used artificially cultured PDAC cells to examine how changing SETD1A expression would affect cell behavior. When they overexpressed SETD1A levels, both cell growth and cell migration ability increased. In another set of PDAC cells, researchers used molecular techniques to interfere with SETD1A expression and then analyzed other genes that were affected by this. “Using a technique called RNA sequencing, we examined overall gene expression after knocking down SETD1A and found that another gene known as RUVBL1 was expressed at lower levels,” explains senior author Shinji Tanaka. 

Further work suggested that SETD1A can methylate histones near the RUVBL1 gene and activate its gene expression. Knocking down RUVBL1 expression in PDAC cells had similar biological effects to those observed earlier with SETD1A interference. “Analysis of survival rates revealed that PDAC patients with high SETD1A and RUVBL1 levels had poorer overall survival, suggesting that their co-expression is an important prognostic biomarker for this cancer,” says Takeshi Ishii.

The study results provide deeper insights into the significance of SETD1A and RUVBL1 expression in PDAC and may offer crucial details to help clinicians with critical treatment decisions for patients suffering from this serious disease.

###

The article, “Identification of a novel target of SETD1A histone methyltransferase and the clinical significance in pancreatic cancer,” was published in Cancer Science at DOI:10.1111/cas.1561
 



Journal

Cancer Science

DOI

10.1111/cas.15615

Article Title

Identification of a novel target of SETD1A histone methyltransferase and the clinical significance in pancreatic cancer

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Carpenter Ants: Prioritizing Caution for Safety

October 22, 2025
blank

Chinese Medical Journal Review Reveals ZBP1’s Crucial Role in Programmed Cell Death and Its Promise for Therapeutic Advances

October 22, 2025

Revolutionizing Our Understanding of Bone Marrow Function

October 22, 2025

Boosting Astaxanthin Production in Green Algae Desmodesmus sp.

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1274 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    305 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    144 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Two-Drug Combination Shows Promise in Enhancing Colorectal Cancer Treatment

Carpenter Ants: Prioritizing Caution for Safety

Scientists Create Wearable Patch for Early Detection of Skin Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.