• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New sub-species of pilot whale identified in Pacific Ocean

Bioengineer by Bioengineer
June 3, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Short-finned pilot whales are found over a wide swath of the world’s oceans, with habitats in the Indian, and Pacific, and North Atlantic oceans. Despite this wide distribution, the whales have been recognized as a single species–but a recent study has found that two unique subspecies actually exist. The study published June 3, 2019, in Molecular Ecology.

Japanese whalers and scientists have long described two “forms” of short-finned pilot whales with distinct body types–the ‘Naisa’ form, which live in Southern Japan and have square-shaped heads; and the ‘Shiho’ form, which lives in northern Japan and have round heads. Yet no prior study had examined the genetic diversity of those whales on a global scale, says Amy Van Cise, a postdoctoral scholar at WHOI and lead author on the study.

“You can’t manage animals globally without understanding their diversity. If you think of a group of animals as a single species, and it turns out they’re not, you could wind up accidentally losing an entire subspecies without knowing it,” she says.

Van Cise was able to study the entire global population structure of the whales using marine mammal tissue archived at NOAA’s Southwest Fisheries Science Center. From it, she identified more than 700 samples taken from short-finned pilot whales, and extracted DNA from each one.

After analyzing the DNA, Van Cise found that there are actually two distinct subspecies of short-finned pilot whale. Surprisingly, she says, those subspecies aren’t separated by any continental barrier, but instead by the vast expanse of the eastern Pacific Ocean.

“You would expect to see a different subspecies of whale in each ocean basin–the Atlantic, Indian, and Pacific. That’s pretty common. But what we found was that short-finned pilot whales in the Atlantic are the same sub-species as those living in the Indian Ocean and western Pacific,” she says. Whales living off northern Japan and the eastern Pacific, however, seemed to be a single distinct subspecies.

From an evolutionary perspective, adds Van Cise, the study shows that the enormous central region of the Pacific–an area with little productivity or food to support the whales–formed a major barrier to the whales’ global distribution.

“It seems to have separated these groups of whales for long enough that they diverged into two different types,” she says. “That means continents and land forms may not have been as significant a barrier as we thought to this species’ evolution. Instead, the oceanic ‘desert’ in the Pacific might have been more important.”

To test these findings, Van Cise used a small section of the whales’ mitochondrial DNA (mtDNA) to determine each group’s genetic divergence (how much its genetic code differed from the others). By comparing that divergence with known whales and dolphins, she was able to verify if the groups were unique species, subspecies, or populations.

“mtDNA is a pretty standard way to look at population structure in a species. It’s really abundant in tissue, and it’s much easier to sequence than nuclear DNA. It only has 16,300 base pairs as opposed to a few million.” Because it’s relatively easy to sequence, scientists have been able to look at a short portion of the mtDNA in whales and dolphins to identify distinct species. With that powerful genetic database, they can identify previously overlooked species or subspecies with tissue samples rather than relying on observing body shape–a more traditional approach that is often slower and more expensive to accomplish.

###

Also collaborating on the study were Robin W. Baird from the Cascadia Research Collective; C. Scott Baker and Marc Oremus of Oregon State University; Salvatore Cerchio of the New England Aquarium; Diane Claridge of the Bahamas Marine Mammal Research Organization; Russell Fielding of the University of the South; Brittany Hancock-Hanser, Karen K. Martien, Erin M. Oleson, and Phillip A. Morin of the National Marine Fisheries Service (NOAA); Jacobo Marrerro of La Laguna University in Tenerife, Spain; Antonio A. Mignucci-Giannoni of the Universidad Interamericana in Puerto Rico; and M. Michael Poole of the Marine Mammal Research Program in French Polynesia.

Funding for this project was provided by Commander, U.S. Pacific Fleet Environmental Readiness Division and NMFS Pacific Islands Fisheries Science Center; NMFS West Coast Region; Scripps Institution of Oceanography Edna Bailey Sussman Research Fellowship; and Woods Hole Oceanographic Institution.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please visit http://www.whoi.edu.

Media Contact
WHOI Media Office
[email protected]

Tags: BiologyEarth ScienceEcology/EnvironmentMarine/Freshwater BiologyOceanography
Share12Tweet7Share2ShareShareShare1

Related Posts

KAIST Creates Bioelectrosynthesis Platform Enabling Switch-Like Precision Control of Cellular Signaling

KAIST Creates Bioelectrosynthesis Platform Enabling Switch-Like Precision Control of Cellular Signaling

August 13, 2025
Sarcocystis halieti DNA Found in Birds Across Europe

Sarcocystis halieti DNA Found in Birds Across Europe

August 13, 2025

ARF Degradation Tunes Auxin Response in Plants

August 13, 2025

Fermented Black Soybeans Boost Neuron Protection Antioxidantly

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Drones and 3D Modeling Reveal New Genetic Insights into Wheat Plant Height

FAU Secures $700,000 EPA Grant to Enhance Water Quality Monitoring in Lake Okeechobee

KAIST Creates Bioelectrosynthesis Platform Enabling Switch-Like Precision Control of Cellular Signaling

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.