• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New study takes aim at advanced types of non-addictive pain therapies

Bioengineer by Bioengineer
August 27, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Wade Van Horn

A team of scientists from ASU’s School of Molecular Sciences and the Biodesign Institute have recently published a study in Nature Communications that helps clarify the contributions to an ion channel’s temperature – dependent activation. This in turn should aid in the development of new types of non-addictive pain therapies.

The ability to sense and respond to temperature is fundamental in biology. Ion channels are formed by membrane proteins that allow ions to pass through the otherwise impermeable lipid cell membrane, where they are used as a communication network.

“TRPV1 is an ion channel that is widely expressed in various tissues and plays a variety of roles in biology,” explains SMS professor Wade Van Horn, senior author of the current research. “It is best known for its role as the primary hot sensor in humans; it is the main way that we sense heat in our environment.”

Although important contributions have been made in the investigation of TRPV1 thermosensing, its mechanism has remained elusive.

TRPV1 is also a common taste and pain sensor, think spicy foods and pepper spray. Beyond these roles, it has been implicated in longevity, inflammation, obesity, and cancer. For decades it has been a target in the search for new types of pain medication, ones that are not addictive.

“However, to date, a common feature is that while TRPV1 targeting compounds can relieve pain, they also cause off-target effects, especially causing changes in body temperature, which has limited their utility. These off-target effects happen because TRPV1 is activated by many distinct stimuli, including ligands (i.e., capsaicin – the main ingredient in pepper spray), heat, and protons (acidic pH),” says Van Horn.

Also particularly limiting, is the uncertainty about the mechanisms that underlie temperature-sensing and how the different activation mechanisms are linked together.

This study used a variety of techniques, from cellular to atomic in nature, to investigate the domain of TRPV1 that is key to its ligand activation.

The techniques included Nuclear Magnetic Resonance spectroscopy experiments (like an MRI) aided by Brian Cherry (Associate Research Professional in the Magnetic Resonance Research Center), intrinsic fluorescence carried out in SMS associate professor Marcia Levitus’ lab. Levitus is also part of the Biodesign Center for Single Molecule Biophysics. Other techniques included far ultraviolet circular dichroism and temperature dependent electrophysiology.

Van Horn explains that this work identifies for the first time, both functionally and thermodynamically, that a particular region (of TRPV1) is crucial to heat activation. The team proposes, and provides experimental validation for, the heat activation mechanism and details a number of structural changes that happen as the temperature is changed.

This study provides a framework that the team anticipates will be foundational for future studies to further refine how we sense high temperatures and, importantly, how we can distinguish and target specific activation mechanisms that should promote the development of new types of non-addictive pain therapies.

All the interdisciplinary studies were completed at ASU. The team also included: Minjoo Kim, Nicholas Sisco and Jacob Hilton who are currently postdoctoral researchers at Columbia University, Barrow Neurological Institute and NIH respectively. Camila Montano and Wade Van Horn, are also part of the Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics and Manuel (Mac) Castro is currently a doctoral student at Vanderbilt University.

###

Media Contact
Jenny Green
[email protected]

Tags: BiochemistryBiologycancerCell BiologyGraduate/Postgraduate EducationHealth CareMicrobiologyMolecular BiologyMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Integrating Medicare Wellness and Problem-Based Visits Lowers No-Show Rates and Enhances Screening Compliance

September 22, 2025

Penn State Health’s Patient-Centered Quality Metric Reframing Project Sets New Standard for Future Quality Metrics

September 22, 2025

Suspension of COVID-Era SNAP Benefits Intensifies Food Insecurity and Financial Strain in Households

September 22, 2025

Ochsner Novant Health 65 Plus – Bellview Welcomes Dr. Brandon M. McElroy

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Medicare Wellness and Problem-Based Visits Lowers No-Show Rates and Enhances Screening Compliance

Enhanced Lithium Storage with Needle-Shaped Ni-MOF/GR Anode

New PET Tracer Allows Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.