• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study shows microbes trap massive amounts of carbon

Bioengineer by Bioengineer
April 26, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Tom Owens.

Violent continental collisions and volcanic eruptions are not things normally associated with comfortable conditions for life. However, a new study, involving University of Tennessee, Knoxville, Associate Professor of Microbiology Karen Lloyd, unveils a large microbial ecosystem living deep within the earth that is fueled by chemicals produced during these tectonic cataclysms.

When oceanic and continental plates collide, one plate is pushed down, or subducted, into the mantle and the other plate is pushed up and studded with volcanoes. This is the main process by which chemical elements are moved between Earth’s surface and interior and eventually recycled back to the surface.

“Subduction zones are fascinating environments–they produce volcanic mountains and serve as portals for carbon moving between the interior and exterior of Earth,” said Maarten de Moor, associate professor at the National University of Costa Rica and coauthor of the study.

Normally this process is thought to occur outside the reach of life because of the extremely high pressures and temperatures involved. Although life almost certainly does not exist at the extreme conditions where Earth’s mantle mixes with the crust to form lava, in recent decades scientists have learned that microbes extend far deeper into Earth’s crust than previously thought.

This opens the possibility for discovering previously unknown types of biological interactions occurring with deep plate tectonic processes.

An interdisciplinary and international team of scientists has shown that a vast microbial ecosystem primarily eats the carbon, sulfur, and iron chemicals produced during the subduction of the oceanic plate beneath Costa Rica. The team obtained these results by sampling the deep subsurface microbial communities that are brought to the surface in natural hot springs, in work funded by the Deep Carbon Observatory and the Alfred P. Sloan Foundation.

The team found that this microbial ecosystem sequesters a large amount of carbon produced during subduction that would otherwise escape to the atmosphere. The process results in an estimated decrease of up to 22 percent in the amount of carbon being transported to the mantle.

“This work shows that carbon may be siphoned off to feed a large ecosystem that exists largely without input from the sun’s energy. This means that biology might affect carbon fluxes in and out of the earth’s mantle, which forces scientists to change how they think about the deep carbon cycle over geologic time scales,” said Peter Barry, assistant scientist at the Woods Hole Oceanographic Institution and a coauthor of the study.

The team found that these microbes–called chemolithoautotrophs–sequester so much carbon because of their unique diet, which allows them to make energy without sunlight.

“Chemolithoautotrophs are microbes that use chemical energy to build their bodies. So they’re like trees, but instead of using sunlight they use chemicals,” said Lloyd, a co-corresponding author of the study. “These microbes use chemicals from the subduction zone to form the base of an ecosystem that is large and filled with diverse primary and secondary producers. It’s like a vast forest, but underground.”

This new study suggests that the known qualitative relationship between geology and biology may have significant quantitative implications for our understanding of how carbon has changed through deep time. “We already know of many ways in which biology has influenced the habitability of our planet, leading to the rise in atmospheric oxygen, for example,” said Donato Giovannelli, a professor at the University of Naples Federico II and co-corresponding author of the study. “Now our ongoing work is revealing another exciting way in which life and our planet coevolved.”

###

CONTACT:

Amanda Womac (865-974-2992, [email protected])

Media Contact
Amanda Womac
[email protected]

Original Source

https://news.utk.edu/2021/04/26/new-study-shows-microbes-trap-massive-amounts-of-carbon/

Related Journal Article

http://dx.doi.org/10.1038/s41561-021-00725-0

Tags: BiologyEcology/EnvironmentMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Streptococcus Protein Triggers PBP1a for Cell Division

Streptococcus Protein Triggers PBP1a for Cell Division

December 19, 2025
blank

Redefining Sex in Science: Three Rigid Frameworks

December 19, 2025

Pneumococcal S Protein Drives Cell Wall Defense

December 19, 2025

RNA-Seq Unveils Gene Expression Differences in Pea Subspp.

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linking Algorithmic Fairness to AI Healthcare Outcomes

K-Wire’s Role in Preventing Hinge Fractures Explored

Bridging Fundamental Research and Applications in Lithium CO2 Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.