• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study shows effects on offspring of epigenetic inheritance via sperm

Bioengineer by Bioengineer
March 20, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In experiments with worms, researchers showed that epigenetic marks on sperm chromosomes affect gene expression and development in offspring

IMAGE

Credit: K. Kaneshiro

As an organism grows and responds to its environment, genes in its cells are constantly turning on and off, with different patterns of gene expression in different cells. But can changes in gene expression be passed on from parents to their children and subsequent generations? Although indirect evidence for this phenomenon, called “transgenerational epigenetic inheritance,” is growing, it remains controversial because the mechanisms behind it are so mysterious.

Now researchers at UC Santa Cruz have demonstrated that epigenetic information carried by parental sperm chromosomes can cause changes in gene expression and development in the offspring. Their study, published March 20 in Nature Communications, involved a series of clever experiments using the nematode worm Caenorhabditis elegans.

Epigenetic changes do not alter the DNA sequences of genes, but instead involve chemical modifications to either the DNA itself or to the histone proteins with which DNA is packaged in the chromosomes. These modifications or “marks” change gene expression, turning genes on or off.

In their experiments with C. elegans, researchers in Susan Strome’s lab at UC Santa Cruz have focused on histone marks, modifications to specific amino acids in the tails of histone proteins. Strome, a professor of molecular, cell and developmental biology, said the new study addressed a central question in the field of epigenetics.

“It’s a very direct question: Does inheriting sperm chromosomes with altered histone packaging of the DNA affect gene expression in the offspring? And the answer is yes,” she said.

First author Kiyomi Kaneshiro, a graduate student in Strome’s lab who led the study, said C. elegans is a good model for studying this question because histone packaging is fully retained in the worm’s sperm chromosomes. In humans and other mammals, histone packaging is only partially retained in sperm.

“There is debate over how much histone packaging is retained in humans, but we know it is retained in some developmentally important regions of the genome,” Kaneshiro said.

Researchers have focused on epigenetic inheritance in the paternal line because the sperm contributes little more than its chromosomes to the embryo. The egg contains many other components that may influence the development of the embryo, making it harder to tease out epigenetic effects in the maternal line.

In her experiments, Kaneshiro selectively removed a specific histone mark from sperm chromosomes, then fertilized eggs with the modified sperm and studied the resulting offspring. A crucial innovation was to use sperm and eggs from two different strains of C. elegans, which enabled Kaneshiro to distinguish between the chromosomes inherited from the sperm and those inherited from the egg. She chose worm strains from Britain and Hawaii that had evolved separately long enough to accumulate many small genetic differences (called single nucleotide polymorphisms).

“The dads were British and the moms were Hawaiian, and there are enough differences between them that we could distinguish between the two parental genomes in the cells of their offspring,” Kaneshiro said. “Through this hybrid system, we were able to see differences in gene expression that were a direct result of the changes in histone marks on the sperm chromosomes.”

Furthermore, those changes in gene expression had developmental consequences. With removal of the histone marks, the sperm chromosomes lost a repressive signal that normally keeps certain genes from being active in the offspring’s germline (the cells that give rise to eggs and sperm). Kaneshiro observed that the offspring’s germline cells turned on neuronal genes and began developing into neurons.

The particular histone mark removed in these experiments is a widely studied epigenetic mark found in animals ranging from worms to fruit flies to humans. “This mark is found on the histones that are retained on sperm chromosomes in humans,” Kaneshiro said.

The new findings show that inherited epigenetic marks affect gene expression and development. But the study involved artificially changing the marks on the sperm chromosomes. What remains to be understood is how environmental effects on an adult organism could alter epigenetic marks in its germline cells, making it possible for those environmental effects to be transmitted to subsequent generations.

“Our findings raise the possibility that histone marks are carriers for transgenerational epigenetic inheritance,” Kaneshiro said. “We know that the environment an organism experiences can change gene expression patterns in somatic cells [non-germline body cells]. If it changes gene expression patterns in the germline, we expect that those changes can be inherited, but we haven’t shown that yet.”

###

In addition to Kaneshiro and Strome, the coauthors of the study include Andreas Rechtsteiner, a bioinformaticist in Strome’s lab. This work was supported by the National Institutes of Health.

Media Contact
Tim Stephens
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-09141-w

Tags: BiologyGeneticsMedicine/HealthMolecular Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

Abiotic Stressors Drive Saprolegniasis in Farmed Fish

Abiotic Stressors Drive Saprolegniasis in Farmed Fish

September 30, 2025

Stowers Institute Welcomes Renowned Developmental and Evolutionary Biologist from HHMI Janelia Research Campus

September 30, 2025

How Antarctic Icefish Reengineered Their Skulls to Dominate an Evolutionary Arms Race

September 30, 2025

Scientists Discover How Certain Plants Produce Their Own Fertilizer—A Breakthrough Revealed Multiple Times

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    61 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Second COVID-19 Infection Doubles Risk of Long COVID in Children, Study Finds

Patient-Reported Outcomes from NRG Oncology Trial Indicate Quality of Life Improvement with Twice-Daily vs. Once-Daily Radiation in Limited-Stage Small Cell Lung Cancer

Deep Learning Automates Lung Cancer Lymph Node Contouring

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 59 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.