• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study sheds light on how neurons respond to aged-related iron accumulation

Bioengineer by Bioengineer
December 6, 2022
in Chemistry
Reading Time: 2 mins read
0
Professor Hyung Joon Cho and his research team
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Iron (Fe) accumulates in the brain cortex with aging. A plethora of studies indicate that progressive iron accumulation in the substantia nigra (SN) in the aged human brain is a major risk factor for Parkinson’s disease (PD) and other neurodegenerative diseases, but not everyone. This is because our body has plans to respond specifically to iron overloading.

Professor Hyung Joon Cho and his research team

Credit: UNIST

Iron (Fe) accumulates in the brain cortex with aging. A plethora of studies indicate that progressive iron accumulation in the substantia nigra (SN) in the aged human brain is a major risk factor for Parkinson’s disease (PD) and other neurodegenerative diseases, but not everyone. This is because our body has plans to respond specifically to iron overloading.

A recent study, jointly led by Professor Taejoon Kwon and Professor Hyung Joon Cho in the Department of Biomedical Engineering at UNIST details the neuronal response to excessive iron accumulation, which is associated with age-related neurodegenerative diseases.

By investigating the response of neurons in the SN against age-related iron accumulation, the research team identified a transcriptome profile of aging-related iron accumulation using rats of different ages and confirmed their iron accumulation using the magnetic resonance images. With the additional animal experiments and cell line experiments, they found that two genes (CLU and HERPUD1) responded to age-related iron accumulation, and the knockdown of these genes severely impaired the cellular tolerance for iron toxicity.

“We conjecture that the understanding of the gene expression landscape during age-related iron accumulation can help us to elucidate molecular pathways and putative preventative strategies against neurodegenerative diseases,” noted the research team.

Their findings have been published in the September 2022 issue of Aging Cell, an open-access journal published by John Wiley & Sons. This study has been supported by the Global Ph.D. Fellowship and the University Key Research Institute (UKRI) programs through the National Research Foundation of Korea (NRF). It has also been supported through the grants by the Korea Health Industry Development Institute (KHIDI) and UNIST.

Journal Reference
Kujin Kwon,Hwapyeong Cho,Soyeon Lee, et al., “Adaptive cellular response of the substantia nigra dopaminergic neurons upon age-dependent iron accumulation,” Aging Cell, (2022).



Journal

Aging Cell

Article Publication Date

13-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

October 13, 2025
Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1233 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Strategy to Weaken Cancer Cells Promises to Boost Prostate Cancer Treatment

Healthcare Costs in Chinese Adults with CKD and Diabetes

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.