• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study sheds light on how neurons respond to aged-related iron accumulation

Bioengineer by Bioengineer
December 6, 2022
in Chemistry
Reading Time: 2 mins read
0
Professor Hyung Joon Cho and his research team
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Iron (Fe) accumulates in the brain cortex with aging. A plethora of studies indicate that progressive iron accumulation in the substantia nigra (SN) in the aged human brain is a major risk factor for Parkinson’s disease (PD) and other neurodegenerative diseases, but not everyone. This is because our body has plans to respond specifically to iron overloading.

Professor Hyung Joon Cho and his research team

Credit: UNIST

Iron (Fe) accumulates in the brain cortex with aging. A plethora of studies indicate that progressive iron accumulation in the substantia nigra (SN) in the aged human brain is a major risk factor for Parkinson’s disease (PD) and other neurodegenerative diseases, but not everyone. This is because our body has plans to respond specifically to iron overloading.

A recent study, jointly led by Professor Taejoon Kwon and Professor Hyung Joon Cho in the Department of Biomedical Engineering at UNIST details the neuronal response to excessive iron accumulation, which is associated with age-related neurodegenerative diseases.

By investigating the response of neurons in the SN against age-related iron accumulation, the research team identified a transcriptome profile of aging-related iron accumulation using rats of different ages and confirmed their iron accumulation using the magnetic resonance images. With the additional animal experiments and cell line experiments, they found that two genes (CLU and HERPUD1) responded to age-related iron accumulation, and the knockdown of these genes severely impaired the cellular tolerance for iron toxicity.

“We conjecture that the understanding of the gene expression landscape during age-related iron accumulation can help us to elucidate molecular pathways and putative preventative strategies against neurodegenerative diseases,” noted the research team.

Their findings have been published in the September 2022 issue of Aging Cell, an open-access journal published by John Wiley & Sons. This study has been supported by the Global Ph.D. Fellowship and the University Key Research Institute (UKRI) programs through the National Research Foundation of Korea (NRF). It has also been supported through the grants by the Korea Health Industry Development Institute (KHIDI) and UNIST.

Journal Reference
Kujin Kwon,Hwapyeong Cho,Soyeon Lee, et al., “Adaptive cellular response of the substantia nigra dopaminergic neurons upon age-dependent iron accumulation,” Aging Cell, (2022).



Journal

Aging Cell

Article Publication Date

13-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025
blank

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Cardiology: Immune-Driven Theranostics Innovations

Co-electroreduction of CO and Glyoxal Yields C3 Products

How Gut Microbes Protect Against Intestinal Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.