• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New study provides detailed view of how hepatitis B virus establishes chronic infection

Bioengineer by Bioengineer
March 11, 2021
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research offers potential strategies for development of new treatments

IMAGE

Credit: Image by Stephanie Maya, Princeton University

Researchers at Princeton have determined how five cellular proteins contribute to an essential step in the life cycle of hepatitis B virus (HBV). The article describing these findings appeared March 11, 2021 in the journal Nature Communications.

Viruses have been with us, shaping our lives, societies and economies for millennia. While some viruses rapidly explode onto the world stage, others smolder in our communities for decades, shattering lives but making few headlines. Hepatitis B virus hasn’t caused any nationwide lockdowns or stock market crashes because it is slow to spread from person to person and is rarely immediately fatal. It is nonetheless incredibly damaging because it can establish lifelong chronic infection with profound consequences for its victims.

“An estimated two billion people have been exposed to HBV, of whom 250-400 million are chronically infected,” said Alexander Ploss, associate professor of molecular biology at Princeton University, and senior author on the study. “Currently, there is no cure for chronic HBV infection, and patients need to be on a lifelong antiviral regimen. Approximately 887,000 individuals die each year from HBV-related liver diseases or liver cancer.”

Ploss and his team are striving to understand HBV’s life cycle in hopes of finding a way to prevent the virus from establishing damaging chronic infections.

“Central to HBV replication is the formation of covalently closed circular DNA (cccDNA) from relaxed circular DNA (rcDNA) which is carried into the host cell by the virus during the initial infection,” Ploss said. “We have recently demonstrated that HBV relies on five host proteins – namely PCNA, RFC complex, POLĪ“, FEN-1, and LIG1 – that are necessary and sufficient for this conversion step.”

As its name implies, rcDNA is a loop of DNA. DNA is a molecule made up of nucleotides arranged in linear fashion along paired, complementary strands. The sequence of nucleotides on one strand encodes the instructions for making a protein while the other strand is its mirror image. Whereas human cellular DNA contains over 20,000 genes, HBV’s DNA genome only contains four. None of the viral proteins made from these genes is required for the conversion of rcDNA to cccDNA. Instead, the virus coopts cellular proteins to accomplish this and other steps of viral replication.

A key feature of HBV rcDNA is that each of its two strands contains a gap in its nucleotide sequence. One strand, called the plus strand, has a gap that is considerably larger than and offset from the gap on the other, minus strand. Cells perceive gaps in DNA as damage that needs to be filled in and repaired. The cellular proteins that carry out DNA repair can’t tell the difference between viral DNA and cellular DNA, so they set to work “repairing” rcDNA as soon as it arrives in the nucleus. This repair process converts rcDNA into an intact circle of double-stranded DNA (that is, cccDNA) that can be maintained in the cell’s nucleus.

Postdoctoral fellow Lei Wei wanted to understand how this repair process takes place in detail. To investigate this, he developed a method to monitor the process of repair taking place on rcDNA. He then identified what steps are involved in repair of each individual strand, tracked the order in which they are completed, and determined which cellular proteins are needed for each step.

The experiments showed that conversion of the plus strand into a continuous circle happens rapidly and requires all five of the cellular proteins working in concert. In contrast, repair of the minus strand requires only two of the five proteins (FEN-1 and LIG1) but is slower because there is a viral protein attached to one end of the minus strand that must be removed before the nucleotide gap can be sealed.

“In this paper, Wei and Ploss provide a compelling story in elucidating the cellular machinery that is essential for converting the incoming HBV genome into the cccDNA,” said Dr. T. Jake Liang, a National Institutes of Health Distinguished Investigator in the Liver Diseases Branch who is an expert on HBV and related viruses. “This work offers not only important insights into the biochemical pathway of cccDNA biogenesis but also potential strategies to target cccDNA for therapeutic development.”

Furthering that goal, the Princeton researchers showed that two compounds targeting cellular proteins could disrupt rcDNA conversion to cccDNA in test tubes. Wei and Ploss are hopeful that future studies will identify drugs that work in the human body.

“Our findings, biochemical approaches, and the novel reagents that we generated and engineered, open the door to providing an in depth understanding how this major human virus establishes persistence in host cells,” Ploss said.

###

This work was supported in part by grants from the National Institutes of Health, the American Cancer Society, the Burroughs Wellcome Fund, the New Jersey Commission on Cancer Research, and Princeton University.

Media Contact
Catherine Zandonella
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21850-9

Tags: Atomic PhysicsMedicine/HealthMolecular BiologyVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CT Scans: Raised Arms Improve Clavicle Age Estimates

August 5, 2025
blank

Two Decades of Flow Cytometry Advancements

August 5, 2025

How Parent-Child Bonding Affects Teens’ Social Media Addiction

August 5, 2025

Tiantan Vaccine Shows Long-Term Mpox Protection in Primates

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bacterial Diversity Across Developmental Stages of Anopheles subpictus

CT Scans: Raised Arms Improve Clavicle Age Estimates

Nigella sativa Nanoparticles: Fighting Bacteria, Oxidants, and Mosquitoes

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.