• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study presents hygroscopic micro/nanolenses along carbon nanotube ion channels

Bioengineer by Bioengineer
March 13, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UNIST


A novel technology, capable of analyzing nanomaterials in our daily lives with the use of common ‘salt’ has been developed. This allows various molecules to amplify up to hundreds of times the signals they produce in response to light, thereby making them very useful for nanomaterial research.

A research team, led by Professor Chang Young Lee in the School of Energy and Chemical Engineering at UNIST has introduced a novel technology, which allows carbon nanotubes (CNTs) to be easily observed under room temperature. The coating of CNT surface with salt crystals allows direct observation of the shape and position changes of CNTs. Their findings also revealed that salt crystals made on CNTs could serve as a lens through which to observe nanomaterials.

Carbon nanotubes (CNTs), which are tube-like materials made of carbon atoms linked in hexagonal shapes, have recently attracted much attention due to their unique optical, mechanical, and electrical properties. However, individual carbon nanotubes are difficult to observe with a general optical microscope because of their extremely small size. Although these objects on a very fine scale can be to examined via the electron microscope that uses a beam of electrons or the atomic force microscopy (AFM) that uses force between individual atoms, such methods are difficult to use and limit the observable area.

The team overcame these limitations by using salts commonly found in the environment. When salt water is added to carbon nanotubes arranged in one dimension and an electric field is applied, salt ions move along the carbon nanotube outer surface to form salt crystals. These salt crystals, ‘clothes’, allow the observation of carbon nanotubes distributed over a large area using only the optical microscope commonly used in laboratories. Salt crystals dissolve well in water, which does not damage carbon nanotubes, and are stable before being washed out, so they can be semi-permanently visualized.

The team also found that salt crystals formed on carbon nanotubes can amplify the optical signals of carbon nanotubes by hundreds of times. Normally, when light receives, internal molecules interact with light energy to emit new signals, or optical signals. Amplifying and analyzing this signal reveals the properties of the material, with salt crystals acting as a “lens” to amplify the optical signal. In fact, the team used the “salt lens” to easily find out the electrical properties and diameters of carbon nanotubes.

“The degree of optical signal amplification can be controlled by changing the refractive index according to the type of salt and the shape and size of the salt crystals,” says Yun-Tae Kim in the School of Energy and Checmial Engineering at UNIST, the first author of the study.

The team went a step further by using a “salt lens” to move traces of glucose and urea molecules through the outer surface of the carbon nanotubes and detect them. The salt lens formed on the outer surface of the carbon nanotubes amplifies the optical signal to find a molecule containing one mole (M) of hundred diameters.

“The key to this technology is the ability to measure physical properties in real time without damaging nanomaterials at normal temperatures and pressures,” says Professor Lee. “Our findings could be more widely applied to research of nanomaterials and nanophenomena.”

###

Their study has been published and featured on the cover of the February 2020 edition of Nano Letters. Professor Jae-Hee Han from Gachon University also partook as a co-corresponding author of the study. Their work has been supported by the Basic Science Research Program and the Nano R&D Program through the National Research Foundation of Korea (NRF). Also, it has been supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Korean Ministry of Trade, Industry & Energy (MOTIE).

Media Contact
JooHyeon Heo
[email protected]
82-522-171-223

Original Source

https://news.unist.ac.kr/hygroscopic-micronanolenses-along-carbon-nanotube-ion-channels/

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.9b01767

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesResearch/DevelopmentTechnology Transfer
Share12Tweet8Share2ShareShareShare2

Related Posts

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025
blank

Zero-Dimensional Octahedral Metal Halides Synthesized via Solvent Incorporation

August 5, 2025

New Study Reveals How Diatoms Thrive and Illuminate the Southern Ocean

August 4, 2025

Mapping Brain Chemistry Through Humanity’s Evolutionary Journey

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Review: Genetic Markers Diagnose Giardia duodenalis

Testing ML Accuracy on Unidentifiable Microplastic Spectra

Hidden Epidemic: Undiagnosed Pediatric Type 2 Diabetes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.