• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study hints at potential antibiotic breakthrough

Bioengineer by Bioengineer
September 27, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The rapid emergence and global spread of antibiotic resistance demands a new approach for developing novel ones. A study published in The FASEB Journal uncovers a novel approach to combatting the fast spread of multidrug-resistant bacteria.

Most antibiotics kill bacteria by targeting regions of their essential proteins that lie on the surfaces of these folded molecules. When mutations modify these surface sites, resistance to antibiotics develops. Rather than targeting the surfaces of proteins, researchers in this study targeted the tightly packed structural core buried behind the protein surfaces, an approach that makes it less likely for bacteria to develop resistance.

"These findings present an exciting new paradigm in antibiotic discovery," said Yaoqi Zhou, PhD, a professor at Griffith University's Institute for Glycomics in Queensland, Australia. "The results of this study could lead to a new set of tools in the ongoing battle against antibiotic-resistant infections that affect millions of people worldwide each year."

To target this structural core, Zhou and colleagues used structure-disrupting, self-derived peptides. They first studied KFF-EcH3, a peptide derived from an essential protein of E. coli and linked with a cell-permeating peptide. Researchers proved that KFF-EcH3 was indeed able to inhibit the growth and survival of E. coli — in both laboratory and clinical, multidrug-resistant strains. Significantly, the study did not detect any resistance developed against KFF-EcH3 over a 30-day period.

The research team used the same approach to introduce another structure-disrupting, self-derived peptide, KFF-NgH1, to target an N. gonorrhoeae essential protein. In the experiment, the peptide inhibited bacterial growth and also treated a gonococcal infection in a human cervical epithelial cell model in vitro.

"This study was based on a rational idea and the results are encouraging. We must always conceptualize biology in 3-D," said Thoru Pederson, PhD, Editor-in-Chief of The FASEB Journal.

###

This research was supported by the National Institute of General Medical Sciences, the National Health and Medical Research Council of Australia, the National Natural Science Foundation of China, and the Taishan Scholars Program of Shandong Province.

The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). The world's most cited biology journal according to the Institute for Scientific Information, it has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century. Receive monthly highlights for The FASEB Journal; subscribe at http://www.faseb.org/fjupdate.aspx.

FASEB is composed of 30 societies with more than 130,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and well-being by promoting research and education in biological and biomedical sciences through collaborative advocacy and service to our societies and their members.

Media Contact

Todd Bentsen
[email protected]
301-634-7129
@faseborg

http://www.faseb.org

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unraveling the Connections Between Brain Development and Mental Health

November 4, 2025

ASBMB Announces Launch of Insights in Biochemistry and Molecular Biology, a New Journal Showcasing Breakthroughs Across Molecular Life Sciences

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.