• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New study discovers genetic changes linked to leukaemia in children with down’s syndrome

Bioengineer by Bioengineer
July 11, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Oxford, in collaboration with colleagues from Hannover Medical School and Martin-Luther-University Halle-Wittenberg, have discovered the specific gene mutations that are required for the development of leukaemia in children with Down’s syndrome. Children with Down’s syndrome have a 150-fold increased risk of myeloid leukaemia, and while some of the genetic causes of this have been previously established, this is the first study to identify a wide range of mutations and how they functionally interact to lead to leukaemia. The study was published today in the journal Cancer Cell.

‘We already knew that 30% of babies born with Down’s syndrome have acquired a change in a gene called GATA1 in their blood cells. This is not an inherited genetic change, but one that occurs and will remain only in the baby’s blood cells,” says study author Professor Paresh Vyas, from the MRC Weatherall Institute of Molecular Medicine at the Radcliffe Department of Medicine, University of Oxford. “The abnormality in the GATA1 gene can be detected by a simple blood test at birth. Babies with an altered GATA1 gene have a predisposition to develop leukaemia, and we often refer to this as ‘myeloid preleukaemia’.’

Of the 30% of children with Down’s syndrome who are found to have ‘myeloid preleukaemia’, only 10% of those will go on to develop myeloid leukaemia (3% of all children with Down’s syndrome). Until now, it was not understood why only some children with the GATA1 mutation were progressing to full leukaemia, while others were not.

‘90% of babies with Down’s syndrome do not go on to develop preleukaemia. But until now, we did not fully understand why some babies did develop leukaemia,’ says Vyas, who is also a group leader at the MRC Molecular Haematology Unit. ‘To answer this question, we carefully characterised the mutations in genes required for leukaemia to develop. We found that additional genetic changes are required in the altered GATA1 blood cells, and these additional changes transform the preleukaemic blood cells into leukaemic blood cells.’ In total, 43 different altered genes were found.

The discovery of which specific genetic changes are required for leukaemia to develop has practical implications. While children with Down’s syndrome are currently tested at birth for the GATA1 mutation, it may now become possible in the future to test for the additional mutations too. ‘This would mean that we could identify the 10% of children who will develop leukaemia more quickly and easily, and importantly reassure 90% of families whose children will not develop leukaemia,’ says Vyas. ‘The identification of these genetic changes may also mean we can develop and test new treatments specifically targeting the genetic changes we now know are required by the leukaemia – and so develop more targeted treatments with less side effects.’

Current treatments for Down’s syndrome children with leukaemia are already highly successful, and off the back of this research, another possible drug treatment has come to light. The drug Ruxolitinib, which is currently used to treat some blood conditions, could potentially be used to treat some of the specific genetic mutations found in the study. Clinical trials of the drug are a possibility for the future.

‘The recent identification of a group of genes linked to leukaemia in children with Down’s syndrome is an important first step towards developing early diagnostic tests and identifying effective treatments to help these patients,’ says Dr Mariana Delfino-Machin, Programme Manager at the Medical Research Council (MRC). ‘The MRC is proud to support the research undertaken at the MRC Molecular Haematology Unit, of which this early-stage study is a great example.’

###

Media Contact
Gen Juillet
[email protected]
http://dx.doi.org/10.1016/j.ccell.2019.06.007

Tags: cancerGeneticsHematologyMedicine/HealthPediatrics
Share12Tweet7Share2ShareShareShare1

Related Posts

Alzheimer’s Disease Disrupts Brain-to-Fat Tissue Communication, Potentially Aggravating Cardiovascular and Metabolic Health

November 5, 2025

Navigating Transition: Care Triad’s Journey to Nursing Homes

November 5, 2025

Impact of RISE Program on Contraceptive Equity in Uganda

November 5, 2025

Projectile Impact on Human Bone and Polyurethane Simulant

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Alzheimer’s Disease Disrupts Brain-to-Fat Tissue Communication, Potentially Aggravating Cardiovascular and Metabolic Health

DGIST Unveils Revolutionary Memristor Wafer Integration Technology, Advancing Brain-Inspired AI Chip Development

Navigating Transition: Care Triad’s Journey to Nursing Homes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.