• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New study could change what we know about platelets

Bioengineer by Bioengineer
April 29, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Kentucky

LEXINGTON, Ky. (April 29, 2020) — University of Kentucky College of Medicine researcher Sidney Whiteheart has been awarded a prestigious Outstanding Investigator Award from the National Heart, Blood and Lung Institute (NHBLI) for his research on how platelets function in hemostasis and during immune responses.

The $6.6 million grant will fund the Molecular & Cellular Biochemistry professor’s research over the next seven years.

The study, which Whiteheart is leading in collaboration with researchers from Beth Israel Deaconess Medical Center, University of Arkansas for Medical Sciences, and the University of Pennsylvania, will focus on how platelets function when they form clots in blood vessels and when they sense circulating pathogens, like viruses.

“Both areas will answer important questions about how platelets work, which could directly contribute to drug development for human diseases, especially thrombotic diseases and chronic viremia,” Whiteheart said.

Platelets are small cell fragments generated in the bone marrow and are the second most abundant “cell” in the body. Normally, billions of them circulate in the bloodstream and bind to damage on a blood vessel forming a clot to prevent bleeding. When platelets are hyperactive, they form a clot big enough to block an artery or vein, which can lead to strokes, heart attacks, and deep vein thrombosis. One in four deaths worldwide is from conditions caused by these types of vessel blockages and they are one of the leading causes of death in Kentucky.

When platelets recognize vessel damage, they normally bind and secrete components that are needed to “seal up the hole” to stop bleeding. Part of this study aims to understand how platelets release their contents and how that process can be controlled to limit the size of a clot.

“You need blood clotting to stop bleeding, but if the clot gets too big or grows to the point where it occludes a blood vessel, you could end up with a stroke or heart attack,” said Whiteheart. “From a clinical perspective, we are looking for ways that we can intervene in that process. We have shown that if we control platelet secretion, we can control clot size in mice. Now we have to figure out how to do that in patients.”

The Whiteheart group will also study the role platelets have in immune responses to viruses. Normally, platelets “pick up” virus particles, which activate them to alert the immune system. Certain viruses, like HIV1, appear to cause platelets to become hyperactive, which can lead to an increased risk of thrombosis and cardiovascular issues for HIV1/AIDS patients.

Whiteheart is working with HIV1/AIDS patients at UK’s Bluegrass Care Clinic to better understand how their platelets are activated by the virus and how it affects clotting. He and UK College of Medicine colleagues Beth Garvy and Zach Porterfield from the department of Microbiology, Immunology & Molecular Genetics, along with Jeremy Wood from the Cardiovascular Research Center, are also setting up similar studies at the African Health Research Institute in Durban, South Africa.

This could lead to therapies to regulate platelet activation and therefore lessen HIV1/AIDS patients’ risk of cardiovascular disease. It could also be applicable to some other viral infections, including COVID-19. Whiteheart is also currently looking at how platelets respond during SARS-CoV-2 infections and how they might contribute to the increased clotting seen in COVID-19 patients.

Whiteheart’s study will provide the groundwork for important therapeutic development. His research program is one of only a few in the world that is examining the capabilities of platelets at the “cellular” level.

“Examining these mechanisms will fill significant gaps in our understanding of how platelets participate in thrombosis and immune responses,” Whiteheart said. “The data generated will answer important questions about what platelets can do and how they do it.”

###

Media Contact
Elizabeth Chapin
[email protected]

Original Source

http://uknow.uky.edu/research/new-66-million-uk-study-could-change-what-we-know-about-platelets

Tags: AIDS/HIVBiochemistryBiologyCardiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

American Gastroenterological Association and MATTER Unveil Innovative GI Care Incubator

August 14, 2025
blank

GTPase-Activating Protein1 Dysregulation Drives Fatty Liver Disease

August 14, 2025

GLUT3 Boosts Glioblastoma Drug Uptake, Sensitivity

August 14, 2025

Restoring Tissue Macrophages to Fight Aging, Cancer

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Expanding the Cybersecurity Landscape: Fostering a Holistic Ecosystem

Targeting Ferroptosis in Cancer Stem Cells: A Novel Strategy to Boost Cancer Therapy

Scientists Redesign Enzyme to Decode Disease Through Cellular Sugar Patterns

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.