• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, June 25, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New solution for stem cell manufacturing

Bioengineer by Bioengineer
June 16, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have developed a unique 3D printed system for harvesting stem cells from bioreactors, offering the potential for high quality, wide-scale production of stem cells in Australia at a lower cost.

Modular 3D printed microfluidic system

Credit: Image: Majid Warkiani et al. Bioresources and Bioprinting 2022.

Researchers have developed a unique 3D printed system for harvesting stem cells from bioreactors, offering the potential for high quality, wide-scale production of stem cells in Australia at a lower cost.

Stem cells offer great promise in the treatment of many diseases and injuries, from arthritis and diabetes to cancer, due to their ability to replace damaged cells. However, current technology used to harvest stem cells is labour intensive, time consuming and expensive.

Biomedical engineer Professor Majid Warkiani from the University of Technology Sydney led the translational research, in collaboration with industry partner Regeneus – an Australian biotechnology company developing stem cell therapies to treat inflammatory conditions and pain.

“Our cutting-edge technology, which uses 3D printing and microfluidics to integrate a number of production steps into one device can help make stem cell therapies more widely available to patients at a lower cost,” said Professor Warkiani.

“While this world-first system is currently at the prototype stage, we are working closely with biotechnology companies to commercialise the technology. Importantly, it is a closed system with no human intervention, which is necessary for current good manufacturing practices,” he said.

Microfluidics is the precise control of fluid at microscopic levels, which can be used to manipulate cells and particles. Advances in 3D printing have allowed for the direct construction of microfluidic equipment, and thus rapid prototyping and building of integrated systems.

The new system was developed to process mesenchymal stem cells, a type of adult stem cell that can divide and differentiate into multiple tissue cells including bone, cartilage, muscle, fat, and connective tissue.

Mesenchymal stem cells are initially extracted from human bone marrow, fat tissue or blood. They are then transferred to a bioreactor in the lab and combined with microcarriers to allow the cells to proliferate.

The new system combines four micromixers, one spiral microfluidic separator and one microfluidic concentrator to detach and separate the mesenchymal stem cells from microcarriers and concentrate them for downstream processing.

The study ‘A modular 3D printed microfluidic system: a potential solution for continuous cell harvesting in large‑scale bioprocessing’ was recently published in the journal Bioresources and Bioprocessing.

Professor Warkiani said other bioprocessing industrial challenges can also be addressed using the same technology and workflow, helping to reduce costs and increase the quality of a range of life-saving products including stem cells and CAR-T cells.



Journal

Bioresources and Bioprocessing

DOI

10.1186/s40643-022-00550-2

Method of Research

Experimental study

Subject of Research

Cells

Article Title

A modular 3D printed microfluidic system: a potential solution for continuous cell harvesting in large‑scale bioprocessing

Article Publication Date

6-Jun-2022

COI Statement

Flyn McKinnirey, Brian Saputro and Graham Vesey are currently employed by
Regeneus company. The other authors have no other relevant affiliations or
financial involvement with any organisation or entity with a financial interest
in or financial conflict with the subject matter or materials discussed in the
manuscript apart from those disclosed.

Share12Tweet7Share2ShareShareShare1

Related Posts

“Whisker” of crystal growing out from a crystalline front.

Scientists unravel mysterious mechanism behind “whisker crystal” growth

June 25, 2022
Smoke plume from the Riverside Fire on Mount Hood National Forest, Oregon, in September 2020

New study offers insight into past—and future—of west-side wildfires

June 25, 2022

Built infrastructure, hunting and climate change linked to huge migratory bird declines

June 25, 2022

Biofinder advances detection of extraterrestrial life

June 24, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    36 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirusUrbanizationZoology/Veterinary ScienceVaccineWeather/StormsVaccinesVirologyVehiclesUniversity of WashingtonViolence/CriminalsWeaponryUrogenital System

Recent Posts

  • Scientists unravel mysterious mechanism behind “whisker crystal” growth
  • New study offers insight into past—and future—of west-side wildfires
  • Built infrastructure, hunting and climate change linked to huge migratory bird declines
  • Biofinder advances detection of extraterrestrial life
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....