• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New snailfish genome reveals how they adapted to the pressures of deep-sea life

Bioengineer by Bioengineer
May 13, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The genome contains extra genes for enzymes that help stabilize its proteins and DNA under high pressures

IMAGE

Credit: Mu Y et al., 2021, PLOS Genetics

A new whole genome sequence for the Yap hadal snailfish provides insights into how the unusual fish survives in some of the deepest parts of the ocean. Xinhua Chen of the Fujian Agriculture and Forestry University and Qiong Shi of the BGI Academy of Marine Sciences published their analysis of the new genome May 13th in the journal PLOS Genetics.

Animals living in deep-sea environments face many challenges, including high pressures, low temperatures, little food and almost no light. Fish are the only animals with a backbone that live in the hadal zone–defined as depths below 6,000 meters–and hadal snailfishes live in at least five separate marine trenches. Chen, Shi and their colleagues constructed a high-quality whole genome sequence from the Yap hadal snailfish to understand how it has adapted to life in the deep sea. The fish was captured from the Yap Trench in the western Pacific Ocean at a depth of about 7,000 meters.

Analysis of the new genome revealed multiple adaptations for living in a cold, dark, high-pressure environment. The snailfish carries extra genes for DNA repair, which may help keep its genome intact under high pressures. It also has five copies of a gene for an enzyme that takes a compound produced by bacteria in its gut and transforms it into one that stabilizes the structure of proteins under high hydrostatic pressure. The snailfish has also lost certain genes involved in vision, taste and smell, which are likely unnecessary in its dark, food-limited environment.

These new findings offer clues into the mechanisms that snailfish have evolved to survive in oceanic trenches. However, the researchers point out that further studies will be needed to confirm the functions of these genetic changes. Additionally, the high-quality genome sequence can serve as a resource for future in-depth investigations of snailfish and other animals living in the hadal zone.

Chen adds, “Many genes associated with DNA repair show evidence of positive selection and have expanded copy numbers in the genome of Yap hadal snailfish, which potentially reflect the difficulty of maintaining DNA integrity under high hydrostatic pressure. The five copies of the trimethylamine N-oxide (TMAO)-generating enzyme flavin-containing monooxygenase-3 gene (fmo3) and the abundance of trimethylamine (TMA)-generating bacteria in the gut of Yap hadal snailfish could provide enough TMAO to improve protein stability under hadal conditions.”

###

Peer-reviewed; Experimental study; Animals

In your coverage please use this URL to provide access to the freely available article in PLOS Genetics:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009530

Citation: Mu Y, Bian C, Liu R, Wang Y, Shao G, Li J, et al. (2021) Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genet 17(5): e1009530. https://doi.org/10.1371/journal.pgen.1009530

Funding: This work was supported by grants from National Key R&D Program of China (2018YFD0900602; https://service.most.gov.cn) to Y.M., and National Program on the Key Basic Research Project (2015CB755903; https://service.most.gov.cn), China Agriculture Research System (CARS-47; http://www.cars.ren), China Ocean Mineral Resources R&D Association Program (DY135-B2-16; http://www.comra.org), and Special Fund for Marine Economic Development of Fujian Province (FJHJF-L-2019-2; https://hyyyj.fujian.gov.cn/) to X.C. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact
PLOS Genetics
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pgen.1009530

Tags: BiologyEvolutionFisheries/AquacultureGenesGeneticsMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

PET Microplastics Harm Pig Pancreas Through Lipotoxicity

January 11, 2026
Tailored MobileNetV3Large Framework for Detecting Plant Diseases

Tailored MobileNetV3Large Framework for Detecting Plant Diseases

January 11, 2026

How Organizational Support Influences Nurses’ Leadership in Tunisia

January 11, 2026

Linking Lifestyle Choices to Teen Mental Health Worldwide

January 11, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    65 shares
    Share 26 Tweet 16
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PET Microplastics Harm Pig Pancreas Through Lipotoxicity

Tailored MobileNetV3Large Framework for Detecting Plant Diseases

How Organizational Support Influences Nurses’ Leadership in Tunisia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.