• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New sensor enables ‘smart diapers,’ range of other health monitors

Bioengineer by Bioengineer
February 2, 2023
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UNIVERSITY PARK, Pa. — Waaahhh! While babies have a natural mechanism for alerting their parents that they need a diaper change, a new sensor developed by researchers at Penn State could help workers in daycares, hospitals and other settings provide more immediate care to their charges.

smart diaper

Credit: Huanyu “Larry” Cheng/Penn State

UNIVERSITY PARK, Pa. — Waaahhh! While babies have a natural mechanism for alerting their parents that they need a diaper change, a new sensor developed by researchers at Penn State could help workers in daycares, hospitals and other settings provide more immediate care to their charges.

The new sensor — so cheap and simple to produce that it can be hand-drawn with a pencil onto paper treated with sodium chloride — could clear the way for wearable, self-powered health monitors for use not only in “smart diapers” but also to predict major health concerns like cardiac arrest and pneumonia.

“Our team has been focused on developing devices that can capture vital information for human health,” said Huanyu “Larry” Cheng, the James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State. “The goal is early prediction for disease conditions and health situations, to spot problems before it is too late.”

Cheng is the lead author on a new study, published in the journal Nano Letters, which describes the design and fabrication process for a reliable, hand-drawn electrode sensor. The sensor is created using a pencil, drawn on paper treated with a sodium chloride solution. The hydration sensor is highly sensitive to changes in humidity and provides accurate readings over a wide range of relative humidity levels, from 5.6% to 90%.

Research into wearable sensors has been gaining momentum because of their wide-ranging applications in medical health, disaster warning and military defense, Cheng explained. Flexible humidity sensors have become increasingly necessary in health care, for uses such as respiratory monitoring and skin humidity detection, but it is still challenging to achieve high sensitivity and easy disposal with simple, low-cost fabrication processes, he added.

“We wanted to develop something low-cost that people would understand how to make and use — and you can’t get more accessible than pencil and paper,” said Li Yang, professor in the School of Artificial Intelligence at China’s Hebei University of Technology. “You don’t need to have some piece of multi-million-dollar equipment for fabrication. You just need to be able to draw within the lines of a pre-drawn electrode on a treated piece of paper. It can be done simply and quickly.”

The device takes advantage of the way paper naturally reacts to changes in humidity and uses the graphite in the pencil to interact with water molecules and the sodium chloride solution. As water molecules are absorbed by the paper, the solution becomes ionized and electrons begin to flow to the graphite in the pencil, setting off the sensor, which detects those changes in humidity in the environment and sends a signal to a smartphone, which displays and records the data.

Essentially, drawing on the pre-treated paper within pre-treated lines creates a miniaturized paper circuit board. The paper can be connected to a computer with copper wires and conductive silver paste to act as an environmental humidity detector. For wireless application, such as “smart diapers” and mask-based respiration monitoring, the drawing is connected to a tiny lithium battery which powers data transmission to a smartphone via Bluetooth.

For the respiration monitor, the team drew the electrode directly on a solution-treated face mask. The sensor easily differentiated mouth breathing from nose breathing and was able to classify three breathing states: deep, regular and rapid. Cheng explained that the data collected could be used to detect the onset of various disease conditions, such as respiratory arrest and shortness of breath and provide opportunities in the smart internet of things and telemedicine.

He added that respiratory rate is a fundamental vital sign and research has shown it to be an early indicator of a variety of pathological conditions such as cardiac events, pneumonia and clinical deterioration. It can also indicate emotional stressors like cognitive load, heat, cold, physical effort and exercise-induced fatigue.

Compared with breath, the human skin exhibits a smaller change in humidity, but the researchers were still able to detect changes using their pencil-on-paper humidity sensor, even after test subjects applied lotion or exercised. Skin is the body’s largest organ, Cheng explained, so if it is not processing moisture correctly, that could indicate that some other health issue is going on.

“Different types of disease conditions result in different rates of water loss on our skin,” he said. “The skin will function differently based on those underlying conditions, which we will be able to flag and possibly characterize using the sensor.”

The team also integrated four humidity sensors between the absorbent layers of a diaper to create a “smart diaper,” capable of detecting wetness and alerting for a change.

“That application was actually born out of personal experience,” said Cheng, who is the father of two young children. “There’s no easy way to know how wet is wet, and that information could be really valuable for parents. The sensor can provide data in the short-term, to alert for diaper changes, but also in the long-term, to show patterns that can inform parents about the overall health of their child.”

The applications of the humidity sensor go beyond “smart diapers” and monitoring for respiration and perspiration, Cheng explained. The team also deployed the sensor as a noncontact switch, which could sense the humidity changes in the air from the presence of a finger without the finger touching the sensor. The team used the noncontact switch to operate a small-scale elevator, play a keyboard and light up an LED array.

“The atoms on the finger don’t need to touch the button, they only need to be near the surface to diffuse the water molecules and trigger the signal,” Cheng said. “When we think about what we learned from the pandemic about the need to limit the body’s contact with shared surfaces, a sensor like this could be an important tool to stop potential contamination.”

Other authors on the study are Penn State doctoral candidate Ankan Dutta as well as Guangyu Niu, Zihan Wang, Ye Xue, Jiayi Yan, Xue Chen, Ya Wang, Chaosai Liu, Shuaijie Du Langang Guo of the Hebei University of Technology. Peng Zhou of Tianjin Tianzhong Yimai Technology Development Co. Ltd. also contributed to the research.

Cheng’s work was funded by the National Institutes of Health, the National Science Foundation and Penn State.



Journal

Nano Letters

DOI

10.1021/acs.nanolett.2c04384

Method of Research

Experimental study

Subject of Research

People

Article Title

Pencil-on-Paper Humidity Sensor Treated with NaCl Solution for Health Monitoring and Skin Characterization

Article Publication Date

30-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Tsimané woman and child

For clues to healthy brain aging, look to the Bolivian Amazon

March 20, 2023
Dr. Donald Kohn

UCLA-led study uses base editing to correct mutation that causes rare immune deficiency

March 20, 2023

Scientists use tardigrade proteins for human health breakthrough

March 20, 2023

Inbreeding contributes to decline of endangered killer whales

March 20, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    61 shares
    Share 24 Tweet 15
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Minderoo-Monaco Commission on Plastics and Human Health issues sweeping new report

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In