• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New sensor detects rare metals used in smartphones

Bioengineer by Bioengineer
April 23, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Cotruvo Lab, Penn State

A more efficient and cost-effective way to detect lanthanides, the rare earth metals used in smartphones and other technologies, could be possible with a new protein-based sensor that changes its fluorescence when it binds to these metals. A team of researchers from Penn State developed the sensor from a protein they recently described and subsequently used it to explore the biology of bacteria that use lanthanides. A study describing the sensor appears online in the Journal of the American Chemical Society.

“Lanthanides are used in a variety of current technologies, including the screens and electronics of smartphones, batteries of electric cars, satellites, and lasers,” said Joseph Cotruvo, Jr., assistant professor and Louis Martarano Career Development Professor of Chemistry at Penn State and senior author of the study. “These elements are called rare earths, and they include chemical elements of atomic weight 57 to 71 on the periodic table. Rare earths are challenging and expensive to extract from the environment or from industrial samples, like waste water from mines or coal waste products. We developed a protein-based sensor that can detect tiny amounts of lanthanides in a sample, letting us know if it’s worth investing resources to extract these important metals.”

The research team reengineered a fluorescent sensor used to detect calcium, substituting the part of the sensor that binds to calcium with a protein they recently discovered that is several million times better at binding to lanthanides than other metals. The protein undergoes a shape change when it binds to lanthanides, which is key for the sensor’s fluorescence to “turn on.”

“The gold standard for detecting each element that is present in a sample is a mass spectrometry technique called ICP-MS,” said Cotruvo. “This technique is very sensitive, but it requires specialized instrumentation that most labs don’t have, and it’s not cheap. The protein-based sensor that we developed allows us to detect the total amount of lanthanides in a sample. It doesn’t identify each individual element, but it can be done rapidly and inexpensively at the location of sampling.”

The research team also used the sensor to investigate the biology of a type of bacteria that uses lanthanides–the bacteria from which the lanthanide-binding protein was originally discovered. Earlier studies had detected lanthanides in the bacteria’s periplasm–a space between membranes near the outside of the cell–but, using the sensor, the team also detected lanthanides in the bacterium’s cytosol–the fluid that fills the cell.

“We found that the lightest of the lanthanides–lanthanum through neodymium on the periodic table–get into the cytosol, but the heavier ones don’t,” said Cotruvo. “We’re still trying to understand exactly how and why that is, but this tells us that there are proteins in the cytosol that handle lanthanides, which we didn’t know before. Understanding what is behind this high uptake selectivity could also be useful in developing new methods to separate one lanthanide from another, which is currently a very difficult problem.”

The team also determined that the bacteria takes in lanthanides much like many bacteria take in iron; they secrete small molecules that tightly bind to the metal, and the entire complex is taken into the cell. This reveals that there are small molecules that likely bind to lanthanides even more tightly than the highly selective sensor.

“We hope to further study these small molecules and any proteins in the cytosol, which could end up being better at binding to lanthanides than the protein we used in the sensor,” said Cotruvo. “Investigating how each of these bind and interact with lanthanides may give us inspiration for how to replicate these processes when collecting lanthanides for use in current technologies.”

###

In addition to Cotruvo, the research team includes Joseph Mattocks and Jackson Ho at Penn State. This work is funded by the Penn State Eberly College of Science Department of Chemistry and the Penn State Huck Institutes of the Life Sciences.

Media Contact
Gail McCormick
[email protected]

Original Source

http://science.psu.edu/news-and-events/2019-news/Cotruvo4-2019

Related Journal Article

http://dx.doi.org/10.1021/jacs.8b12155

Tags: BacteriologyBiochemistryCell BiologyChemistry/Physics/Materials SciencesMaterialsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

American Technology to Measure Plasma in World’s Largest Superconducting Fusion System

American Technology to Measure Plasma in World’s Largest Superconducting Fusion System

October 15, 2025
Bio-Inspired Prototype Glucose Battery Mimics Human Metabolism

Bio-Inspired Prototype Glucose Battery Mimics Human Metabolism

October 15, 2025

Anna Krylov and Mikhail Yampolsky Named Recipients of the Prestigious George Gamow Award

October 15, 2025

Detecting Gravitational-Wave “Beats” in Pulsar Rhythms: Is It Possible?

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1244 shares
    Share 497 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Mothers’ Breastfeeding Confidence and Mindfulness Connection

Why Retinoblastoma Treatment in Kids Delays

WSU Initiative Decreases Hospital Admissions for Home Health-Care Patients

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.