• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New research reveals drivers of regionally different ozone responses to the COVID-19

Bioengineer by Bioengineer
February 8, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: TANG Rong

The outbreak of COVID-19 raised a question about the relationship between anthropogenic emissions and air pollution, which has aroused heated discussion. Research on air-quality changes caused by the lockdowns in different areas shows similar substantial reductions in primary emissions. However, regional disparities exist in responses of secondary pollutants to emissions reduction, especially fine particulate matter and ozone (O3).

Professor Ding Aijun and his team from Nanjing University explored global air-quality changes during COVID-19 lockdowns and regional disparities in O3 responses to emission reductions. They integrated multiple observational datasets, including global air quality monitoring network and satellite retrievals, to shed more light on the regional differences in interactions between emissions, atmospheric chemistry, and meteorological conditions. Their findings were recently published in Atmospheric and Oceanic Science Letters.

“Observational signals of air-quality change were extracted from multi-year ground-based measurements and satellite-retrieved atmospheric composition columns. Ozone shows rising signals in most areas of both East Asia and Europe, whereas a non-negligible declining signal exists in North America, despite reductions in nitrogen oxides (NOx) over the three regions. This indicates significant differences in the relationships between NOx and O3 changes,” says by Prof. Ding.

Furthermore, Ding and his team investigated meteorological and atmospheric chemical drivers behind the different O3 responses based on data analysis and proxy indicators (HCHO/NO2) for diagnosing O3 photochemical sensitivity. They found that the responses of O3 to declines in NOx can to a certain extent be affected by the primary dependence on its precursors. The response of O3 in Europe fits particularly well with the O3 sensitivity regimes.

The study points out that meteorological factors–especially temperature–are rather important drivers of O3 responses. Apart from weakened titration effects caused by declines in NOx, increased O3 in East Asia and Europe tended to be largely dominated by the climatologically warmer temperatures during the lockdowns in 2020.

“Still, the contribution of rising temperature may have been partly offset by weakened photochemical reactions due to a decline in solar radiation and an increase in relative humidity in southern China and southern Europe. For North America, declines in temperature and substantial increases in humidity might have been important contributors to the decreased O3 over the western coasts,” concludes by Prof. Ding.

By investigating the impacts of meteorological conditions and chemical sensitivity under emission reductions, this research was able to emphasize the importance of regional disparities and combined effects of precursor reductions and meteorological influences in mitigating O3 pollution.

###

Media Contact
Ms. LIN Zheng
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.aosl.2020.100015

Tags: Atmospheric ChemistryAtmospheric ScienceClimate ChangePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring the GT92 Gene Family in Cotton

October 11, 2025
blank

Methylome Changes Drive Fiber Differentiation in Cotton

October 11, 2025

New Framework Uncovers Differential Chromatin Interactions

October 11, 2025

Sex Differences in Pig Blood Gene Expression

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1214 shares
    Share 485 Tweet 303
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping Brain Activity: Fast-Scan Voltammetry Meets fMRI

Advances and Obstacles in Late-Onset Cerebellar Ataxias

Revolutionizing Heart Health: Targeting Autonomic Nervous System

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.